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Explanation in Expert Systems: A Survey

Johanna D. Moore
UCLA Department of Computer Science William R. Swartout

a.d USC/Infoi hi,±4ioi Scieiics hnLtituie
USC/Information Sciences Institute

Abstract
In order to be considered useful and acceptable, expert systems must be able to

explain their knowledge of the domain and the reasoning processes they employ to pro-
duce results and recommendations. Despite the fact that the need for explanation has
been widely recognized, current expert systems have only limited explanatory capa-
bilities. In this survey, we review early approaches to explanation in expert systems
and discuss their limitations. We discuss improvements to the explanation capabilities
based on enriched knowledge bases of expert systems. We then argue that further im-
provements in explanation require better generation techniques. Related work in the
field of natural language generation suggests techniques that are useful to the task of
explanation in expert systems; however, even those techniques will not provide all of
the capabilities required for the task of carrying on a dialogue with the user. Finally, we
describe our approach to explanation, which provides the facilities necessary to carry
on an interactive dialogue with the user.

1 Introduction

In order to be considered useful and acceptable, expert systems must be able to explain
their knowledge of the domain and the reasoning processes they employ to produce results
and recommendations. Expert systems researchers have identified several reasons why ex-
planation capabilities are not only desirable, but crucial to the success of expert systems.
These include assisting both users and system builders in understanding the contents of the
system's knowledge base and reasoning processes; facilitating the debugging of the system
during the development stages; educating users both about the domain and the capabilities
of the system; and persuading users that the system's conclusions are correct so that they
can ultimately accept these conclusions and trust the system's reasoning powers [BS84]. In
addition, an explanation facility can be useful for assessing the system's appropriateness for
a given task. The scope of an expert system may be quite narrow and explanation can help
a user discover when a system is being pushed beyond the limits of its knowledge [Swa83].

The critical need for explanation has been voiced not only by expert system builders,
but by the intended user community as well. When physicians were asked to rank 15
capabilities of computer-based consultation systems in order of importance, they ranked the
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ability "to explain their diagnostic and treatment decisions to physician users" as the most
essential of the capabilities surveyed [TS84]. Third on the list was the ability to "display an
understanding of their own medical knowledge." The desirability of explanation capabilities
to these users is underscored by the fact that the capability to "never make an incorrect
diagnosis" was ranked 14th out of 15 capabilities surveyed!

Despite the fact that the need for explanation has been widely recognized, current expert
systems have only limited explanatory capability. In particular, the explanation facilities
of most current systems can be characterized as:

" narrow: only a few types of questions can be answered

" inflexible: explanations can be presented in only one way

" insensitive: explanations cannot be tailored to meet the needs of different users or
of different situations

" unresponsive: the system cannot answer follow-up questions or offer an alternative
explanation if a user does not understand a given explanation

" inextensible: new explanation strategies cannot be added easily.

These problems stem from limitations in two areas. First, the knowledge bases of cur-
rent systems are inadequate in many ways. Until recently, expert systems architects have
concentrated their efforts on the problem-solving needs of the system. They have designed
knowledge bases and control mechanisms best suited to performing the expert task. Because
of this, the explanation capabilities of these systems are limited to producing procedural
descriptions of how a given problem is solved. Knowledge needed to justify the system's
actions, explain general problem solving strategies, or define the terminology used by the
system is simply not represented and therelore cannot be included in explanations [Cla83b],
[Swa83]. Deficiencies in the knowledge representation contribute to the inflexibility, insen-
sitivity, and unresponsiveness of these systems as well. To provide different explanations to
different users, in different situations, or in response to requests for elaboration, the system
must have a rich representation of its knowledge. The system must have abstract strategic
knowledge as well as detailed knowledge, a rich terminological base, and causal knowledge
of the domain.

But only half of the problem can be solved by improvements in the knowledge base.
Once additional knowledge is made available, that knowledge must be employed by the
explanation mechanism. The second area of weakness in current systems lies in their text
planning and generation strategies. Expert system builders, wishing to circumvent the
difficult problems in natural language generation and discourse, have attempted to provide
explanations by exploiting simple strategies such as translating the sequence of steps the
system executed in producing a result, or filling in the blanks in templates. Much of the
text produced by these systems is canned into the translation rules or templates. The
explanation strategies are extremely rigid; there are few choices to be made after selecting
the appropriate template. While these systems are capable of producing multi-sentential
texts, they have little, if any, understanding of the text they produce and have no model of
how the clauses in the text relate to one another or what role individual clauses in the text
play in responding to the user's query.
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Moreover, such strategies assume that a trace of the procedures followed by the program
in solving a problem will produce an explanation that is coherent to end users. But, as other
researchers ([Dav76], [WJ82], [Swa83], [Cla83b], [PC84]) have noted, and the examples in
the next section illustrate, the computationally efficlent reasoning strategies used by such
programs to produce a result often do not form a good basis for understandable explanations.
This suggests that this assumption be abandoned, and that we come to regard explanation
production as a problem-solving activity in its own right. In this view, the explainer is
confronted with the problem of determining the most appropriate way to convey information
to the user. In forming an explanation, the explainer may employ Lhe knowledge captured
in the system's reasoning methods and execution trace, but it is not limited to *L. Thus, we
are advocating a separation of the process of explanation production from that of domain
problem solving so that the structure of the explanations no longer slavishly follows that of
the reasoning methods or execution trace. As Webber suggests, the explainer should use the
program's reasoning to "suggest and instantiate conceptually more accessible strategies for
organizing and presenting justifications" [WJ82]. Davis argues that an approach in which
problem solving and explanation are distinct more accurately reflects human behavior. An
expert's account of how he solved a complex problem may be quite different from a simple
recap of his actions because the process of solving the problem often produces new insights
or views of the problem. These may lead to a "more compact explanation" that cannot be
mimicked by simply omitting details [Dav76].

Existing explanation strategies have proven inadequate for current systems and will be-
come even less viable as knowledge bases become more sophisticated. If we are to address
the problems cited above, explanation must be treated as what it is: a problem in text-
planning and natural language generation. Instead of simply translating code into English,
an explanation facility must employ sophisticated text-planning strategies of the kind de-
veloped by researchers studying natural language generation. Explainers of the future must
have strategies that are based on those observed in naturally-occurring text. These strate-
gies must be flexible so that explanations can be tailored to the needs of individual users
and specific dialogue settings. Explainers must have alternative strategies for producing
responses so that they may provide elaboration or clarification when users are not satisfied
with the first explanation given. Furthermore, the system must be able to interpret follow-
up questions about misunderstood explanations or requests for elaboration in the context
of the dialogue that has already occurred, and not as independent questions.

Although an enhanced knowledge base is necessary to support such strategies, a more
sophisticated knowledge base will actually make the task of designing explanation strategies
more difficult since the explainer will now have to make many more choices when producing
an explanation. For example, if the system represents its knowledge at various levels of
abstraction, the explainer must choose a level of abstraction for presenting its explanations.
It must decide which steps to elaborate and whether to use abstract or specific terminology.
Future explanation mechanisms will need an understanding of how explanations should be
structured so that they will be able to choose among the many alternatives. C3

In this paper, we describe early approaches to explanation generation in expert systems,
analyzing two systems as case examples and discussing their limitations in detail. We then
briefly discuss two approaches that confront the problem of capturing more of the knowl-
edge needed to support sophisticated explanation capabilities. To confront the problem
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of devising sophisticated explanation techniques, we draw on the natural language genera-
tion literature. Finally, we discuss some current research in providing an explanation facility
that is able to react to feedback from the user by answering follow-up questions and offering
further explanation when the user indicates dissatisfaction with a given explanation.

2 Early Approaches to Explanation in Expert Systems

Early attempts to provide programs with an ability to explain their behavior fall into two
categories: 1) those that produce explanations from text prepared a priori and associated
with structures or procedures in the program, and 2) those that produce explanations by
translating directly from the program code and execution traces.

2.1 Explanation From Canned Text or Templates

In the first approach, system builders anticipate what questions are likely to be asked and
construct the natural language text of the responses tc be given. This text is often referred
to as canned text and explanations produced by displaying this text are canned explanations.
The canned text may contain variables to be filled in with values from a specific execution of
the program. Structures that mix canned text with slots to be filled in are called templates.
Error messages in programs are a common example of this approach.

The advantage of this approach is its simplicity. Once a program is written, text is
prepared and associated with each part of the program to be explained. When a user
requests explanation of some aspect of the program's behavior, the text associated with
that portion of the program is simply displayed.

However, the canned text approach has several serious drawbacks. First, since the text
strings used to explain the code are independent from the code itself, inconsistency between
the code and the text strings can arise as the code is modified. This makes it more difficult
to be certain that the system is actually doing what it claims to be doing. In addition,
since the system can only answer questions it has appropriate text strings for, all questions
the system can answer must be anticipated in advance and the appropriate explanation
templates added to the system. This may be feasible for small systems expected to answer
a very limited set of questions, but for large systems it will become increasingly difficult
to anticipate all of the questions that users would like to ask. In addition, each time new
functionality is added to the code, templates to explain that functionality must be added
and their interactioi, with existing templates must be understood.

The most serious drawback of the canned text approach is that the system has no
conceptual model of the explanations it is producing. It has no representation of the purpose
an explanation is serving or how parts of the explanation are related to one another in
achieving that purpose. To an explanation system of this type, all explanations are simply
strings of characters associated with certain parts of the program.

2.2 Explanation By Translating the Code

In an attempt to alleviate the problems of inconsistency and inextensibility associated with
the canned text approach, researchers developed explanaLiun systems which produce theil
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explanations directly from the system's code. In this approach, programs are written in
a language to which simple transformations can be applied to produce natural language
explanations of the code's behavior.

To illustrate this approach, we will consider two systems in detail. The first is the
Digitalis Advisor [GSP78], [Swa77], which used a translate-the-code approach to generate
explanations of the system's behavior. The second is the original MYCIN system [Sho76],
[Dav76], [BS84], which produced its explanations by combining the translate-the-code and
canned text approaches.

2.2.1 The Digitalis Advisor

The Digitalis Advisor is a program designed to advise physicians regarding digitalis ther-
apy. In structuring the Digitalis Advisor, an attempt was made to model the structure of
the expert's problem-solving techniques. The program is structured into levels of abstrac-
tion, where higher-level procedures are intended to represent more general goals or actions.
High-level procedures call more specific procedures, which in turn call still more specific pro-
cedures, and so on. For example, the procedure used to begin treating a patient is BEGIN

THERAPY. One of the procedures that this procedure calls is CHECK SENSITIVITIES, which
checks for any sensitivities the patient may have to the drug. CHECK SENSITIVITIES in turn
calls a number of subprocedures, one for each type of sensitivity that must be considered.
One of these is CHECK SENSITIVITY DUE TO THYROID FUNCTION.

When the system is asked to describe how therapy begins, the call to CHECK SENSITIV-

ITIES will be mentioned as a step in the process, but will not be further elaborated. If the
user wishes to know how sensitivities are checked, he may ask the system to describe C HECK

SENSITIVITIES and the system will then give the details of thii procedure, including steps
such as CHECK SENSITIVITY DUE TO THYROID FUNCTION. A user who wishes to know the
details of how this particular sensitivity is checked may inquire further. Figure 1 shows the
explanation generated by the Digitalis Advisor in response to such a query.'

There are some advantages to the translate-the-code approach. The explanation strate-
gies employed by the Digitalis Advisor are extremely simple. The structure of the explana-
tions follows the structure of the program code exactly and the names of variables in the
explanation are those used in the program. For this reason, explanations produced in this
manner are extremely useful for system builders developing and debugging the system. In
addition, because the explanations are produced directly from the code, changes in the code
will be reflected in the system's explanations automatically. Thus, consistency between code
and explanation is guaranteed.

But there are also limitations to this approach. We will return to these in Section 3
after we have discussed the MYCIN system.

2.2.2 MYCIN

MYCIN is a rule-based medical consultation system designed to provide advice regarding
diagnosis and therapy for infectious diseases [Sho76], [Dav76], [BS84]. MYCIN's medical

'This example is actually medically incorrect - myxedema is not a sensitivity. This error in the Digitalis
Advisor was detected only whei 2m iys tem was recoded in the XPLAIN framework to provide better
explanations!
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To check sensitivity due to thyroid-function I do the following steps:

1. If the current value of the status of myxedema is unknown then
I ask the user the level of T4.

2. 1 do one of the following:

2.1 If either the status of myxedema is present or the status of
myxedema is unknown and the level of T4 is less than 2.50
then I do the following substeps:

2.1.1 I add myxedema to the present and correctable conditions.

2.1.2 I remove myxedema from the degradable conditions.

2.1.3 I set the factor of reduction due to myxedema to 0.67.

2.1.4 I add myxedema to the reasons of reduction.

2.2 Otherwise, I add myxedema to the degradable conditions,
remove myxedema from the present and correctable
conditions, set the factor of reduction due to myxedema
to 1.00 and remove myxedema from the reasons of reduction.

Figure 1: Explaining How A Task Is Accomplished

knowledge is encoded in a set of rules. Each rule is intended to represent a single, indepen-
dent "chunk" of domain-specific knowledge indicating a conclusion that can be drawn if the
conditions specified in the premise are satisfied. Figure 2 shows the internal representation
of a rule with its English translation. Rules are composed from a small set of primitive
functions that makc up the rule language. Associated with each of the primitive functions
(e.g., AND, SAME, MEMBF) is a template with blanks to be filled in by translations of the
function's arguments (e.g., CNTXT, SITE, GI). These templates are used when generating
explanations.

A consultation is run by backward chaining through applicable rules, asking questions of
the user when necessary. For example, if the program is attempting to determine the identity

of an infecting organism (i.e., determining the identity of the organism is the system's goal),
it retrieves all of the rules that draw a conclusion about the identity of the organism. It
then invokes each rule in turn by evaluating the rule's premises to see whether or not

all of the necessary conditions are satisfied. For example, when the rule in Figure 2 is
invoked, evaluating the first premise requires determining the type of the infection. This
now becomes a subgoal and the process of finding applicable rules and invoking them recurs.
As the consultation progresses, MYCIN builds a history tree reflecting the goal/subgoal
structure of the executing program.

Explanations are produced from the history tree using the rule templates to translate
the sequence of rules that were applied to reach a conclusion. While the consultation is in
pr-gress, whenever MYCIN asks a questiuit, i user may exdmine the current reasoning
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PREMISE: (AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PORTAL GI))

ACTION: (CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .7)

IF: 1) The infection is primary-bacteremia, and
2) the site of the culture is one of the sterile sites, and
3) the suspected portal of entry of the organism is the

gastro-intestinal tract,

TIIEN: There is suggestive evidence (.7) that identity of the
organism is bacteroides.

Figure 2: Internal Representation and English Translation of MYCIN Rule

chain by asking why the system is asking that question. To answer such questions, the
system looks up in the history tree to see what higher-level goal it is attempting to satisfy.
Limited forms of follow-up questions are handled. Repeatedly asking "why" allows the
user to ask about successively higher-level goals. For any of the subgoals mentioned in the
answer to a why-question, the user may ask how this goal was (will be) achieved. To answer
how-questions, the system looks down in the history tree to find all the ways that a subgoal
was (may be) achieved. This may involve looking at the execution trace to see what rules
actuially contributed to the conclusion. An example from [BS84] demonstrating MYCIN's
explanation capabilities, including repeated why and how questions, appears in Figure 3.

Users may also ask questions once the consultation is complete. MYCIN responds to
questions about the current state of the system's knowledge base, including both static
domain knowledge and facts accumulated during a particular consultatiun. Questions are
parsed using a keyword approach, relying strongly on the very specific vocabulary of the
domain to understand what is being asked. Questions are classified into a limited set of
question types. Corresponding to each question type, there are a number of possible answer
templates, one of which will be chosen based on the history tree and the system's knowledge
base.

These templates are very rigid in structure. For example, for questions of the form "How
do you know the value of <parameter> of <context>?" the two answer templates are:

I used <rule> to conclude that <parameter> of <context> is <value>.
This gave a cumulative Certainty Factor of <certainty factor>.
The last question asked before the conclusion was made was <question
number>.

7



15) Is the patient's illness with ORGANISM-1 a hospital acquired infection?

**WHY?

(i.e., WHY is it important to determine whether or not the infection with
ORGANISM-1 was acquired while the patient was hospitalized?]

[1.0] This will aid in determining the category of ORGANISM-1.
It has already been established that

[1.1] the gram stain of ORGANISM-1 is gramneg, and
[1.2] the morphology of ORGANISM-1 is rod, and
[1.3] the aerobicity of ORGANTSM-1 is facultative

Therefore, if
[1.4] the infection with ORGANISM-1 was not acquired while the

patient was hospitalized
then there is strongly suggestive evidence (.8) that the category of

ORGANISM-1 is enterobacteriaceae
ALSO: there is weakly suggestive evidence (.1) that the identity

ORGANISM-1 is pseudomonas-aeruginosa
[RULE037].

**WHY?
[i.e., WHY is it important to determine the category of ORGANISM-i?]
[2.0] ... in order to determine the identity of ORGANISM-1.

It has already been established that
[2.1] this blood culture was taken from a sterile source

Therefore, if
[2.2] this current organism and at least one of the list of members

associated with the category of the organism agree with
respect to the following properties: air conformation

then there is strongly suggestive evidence (.9) that each of them is the
identity of ORGANISM-1

[RULE003].
**HOW 1.3?
[i.e., HOW was it established that the aerobicity of ORGANISM-i is facultative'.'
The following were used:
[3.1] RULE027 indicated there is strongly suggestive evidence (.8) that the

aerobicity of ORGANISM-1 is facultative
[2.1] RULE027 indicated there is weakly suggestive evidence (.2) that the

aerobicity of ORGANISM-1 is anaerobic
Since this gave a cumulative CF of (.8) for facultative, and (.2) for

anaerobic, it has been established that the aerobicity of Ol(;ANIS.M-1
is facultative.

"**HOW 1.1?
[i.e., IHOW was it established that the gram stain of O[(ANISM-I

is gramneg?
You said so [question II].

Figure 3: A Sample MY('IN Explanation
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In answer to question <question number> you said that

<parameter> uf <context> ib <value>.

So we see that MYCIN uses a combination of the translate-the-code and canned text
approaches. To answer questions about what the program is doing, MYCIN follows the his-
tory tree trT'nslating the rules that have been executed. To answer other types of questions,
MYCIN relies on templates containing much canned text. As in the Digitalis Advisor, the
advantage of MYCIN's approach is that the explanation strategies are simple. However,
both MYCIN and the Digitalis Advisor have many limitations, which we now discuss.

3 Limitations of the Early Approaches to Explanation

Because the early approaches to explanation were so simple and limited, there are many
types of questions users would like to ask that these systems are not capable of answering
or to which the responses generated are unsatisfactory. In a study of several examples of
inadequate explanations that MYCIN generated in response to questions asked by users
[BS84], the implementors determined that problems arose because of: (1) MYCIN's lack of
support knowledge, i.e. the underlying mechanistic or associational links that explain why
the action portion of a rule follows from its premises; (2) MYCIN's failure to deal with the
context in which a question was asked - MYCIN has no sense of dialogue, so each question
requires full specification of the points of interest without referenice to earlier exchanges;
and (3) a misinterpretation of the user's intent in asking a question. The study identified
examples of simple questions that could mean four or five different things depending on what
the user knows, the information currently available about the patient under consideration,
or the content of the earlier discussions.

These limitations can be broken down into two general problems: 1) the lack of knowl-
edge needed to support the production of explanations, and 2) the lack of a general model
of explanation.

3.1 Impoverished Knowledge Bases

A severe limitation of systems that generate explanations solely by translating their code is
that these systems cannot give justifications for their actions. These systems can state what
they did but cannot tell the user why they did it or why they did things in the order they
did them. For example, in the explanation produced by the Digitalis Advisor in Figure 1,
the system cannot give a causal rationale for reducing the dose of digitalis if myxedema is
present.

In attempting to adapt MYCIN for use as a tutoring system, Clancey examined MYCIN's
rule base and found that individual rules serve different purposes, have different justifica-
tions, and are constructed using different rationales for the ordering of clauses in their
premises [Cla83b]. However, these purposes, justifications and rationales are not explicitly
included in the rules; therefore many types of explanations simply are not possible. For
example, consider the rule shown in Figure 4 and suppose that the user wishes to know
why the five clauses in its premise suggest that the organism causing the infection may be
diplococcus or e.coli. MYCIN cannot explain this because the system knows no more about
the association between the premises and conclusion than what is stated in this rule.

9



IF: 1) the infection which requires therapy is meningitis,
2) only circumstantial evidence is available for this case,
3) the type of meningitis is bacterial,
4) the age of the patient is greater than 17 years old, and
5) the patient is an alcoholic,

THEN: there is evidence that the organisms which might be causing the
infection are diplococcus-pneumoniae (.3) or e.coli (.2)

Figure 4: A MYCIN Rule With Implicit Knowledge

In particular MYCIN does not know that clauses 1, 3, and 5 together embody the
causal knowledge that if an alcoholic has bacterial meningitis, it is likely to be caused by
diplococcus. 2 Furthermore, MYCIN does not realize that clause 4 is a screening clause that
prevents the system from asking whether the patient is an alcoholic when the patient is
not an adult - thus making it appear that MYCIN understands this social "fact." How-
ever, MYCIN does not explicitly represent, and therefore cannot explain, this relationship
between clauses 4 and 5. Even worse, not knowing that the system makes this assumption
may lead the user to infer that age has something to do with the type of organism causing
the infection.

Another hidden relationship exists between clauses 1 and 3. Clearly bacterial menin-
gitis is a type of meningitis, so why include clause 1? The ordering of clauses 1 and 3
implicitly encodes strategic knowledge about how the program carries out a consultation.
The justification for the order in which goals are pursued is implicit in the ordering of the
premises in a rule. The choice of ordering for the premises is left to the discretion of the rule
author and there is no mechanism by which he can record the rationale for his choices. This
makes it impossible for MYCIN to explain its general problem-solving strategy, i.e. that it
establishes that the infection is meningitis before it determines if it is bacterial meningitis
because it is following a refinement strategy of diagnosing the disease [HCR84].

Furthermore, the order in which rules are tried to satisfy a particular goal will affect
the order in which subgoals are pursued. Recall that when a goal such as determining the
identity of the organism is being pursued, MYCIN invokes all of the rules that conclude
about the identity of the organism in the order in which they appear in the rule base. This
order is determined by the order in which the rules were entered into the system! Thus
MYCIN cannot explain why it considers one hypothesis before another in pursuing a goal.
In addition, because attempting to satisfy the premises of a rule frequently causes questions
to be asked of th,, user, MYCIN cannot explain why it asks questions in the order it does
because this too depends on the ordering of premises in a rule and the ordering of rules

2 Diplococcus is normally found in the mouth and throat. The fact that the patient is an alcoholic allows
access of the organisms from the throat and mouth to the lungs by reaspiration of secretions. The organism
passes from the lungs to the meninges by the blood. The organism finds favorable conditions for growth
because the alcoholic patient is a compromised host and is therefore susceptible to infection.
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in the knowledge base. .As Clancey points out in [Cla83b], "focusing on a hypothesis and
choosing a question to confirm a hypothesis are not arbitrary in human reasoning" and
thus users will expect the system to be able to explain why it pursues one hypothesis before
another and will expect questions to follow some explicable line of reasoning.

Another type of knowledge that is not explicitly represented in these systems is ter-
minological knowledge. For example, one of the steps in the Digitalis Advisor's procedure
BEGIN THERAPY is CHECK SENSITIVITIES, but what is a sensitivity and what do sensitivities
have to do with digitalis therapy? Users who are novices in the task domain will need to
ask questions about terminology to understand the system's responses and to be able to
respond appropriately when answering the system's questions. Experts may want to ask
such questions to determine whether the system's use of a term is the same as their own.
Because the knowledge of what a term means is implicit in the way it is used in the rules
or procedures that make up the the system's knowledge base, the system is not capable
of explaining what such terms mean in a way that is acceptable to users. An effort to
explain terms by examining the rule base of an expert system [Rub85] has been only par-
tially successful because so many different types of knowledge are encoded into the single,
uniform rule formalism. This makes it difficult to distinguish definitional knowledge from
other types of knowledge.

As we have seen, rules and rule clauses incorporate ma:ny different types of knowledge,
but the uniformity of the rule representation obscures their various functions thus making
comprehensible explanation impossible. Much of the information that went into writing the
rules (in the case of MYCIN) or the program (in the case of the Digitalis Advisor) including
justification and strategic information is either lost completely or made implicit in the rul, s
or program code therefore is not available to be explained. Both Swartout [Swa8l] an(
Clancey [Cla83b] have argued that the different types of knowledge (definitional, worlu
facts, causal, strategic) must be separately and explicitly represented if systems are to be
able to explain their strategy and justify their conclusions. As a consequence, later efforts
have addressed the problem of capturing the knowledge and decisions that went into writing
the program and explicitly representing this information so that it will be available for
explanation. This research is briefly discussed in Section 4 For a more detailed discussion
of knowledge representation issues and a description of the Explainable Expert Systems
approach, see [SS87b1, [SS87a].

3.2 Lack of General Model of Explanation

3.2.1 The "Recap as Explanation" Myth

The translate-the-code approach places much of the burden of producing explanations on the
programmer. It relies on the programmer's ability to structure the program in a way that
will be understandable to users who are knowledgeable about the task domain. For example,
because the Digitalis Advisor is hierarchically structured into procedures that model the
expert's solution to the digitalis therapy problem, the explainer effectively summarizes a
procedure by mentioning the call to that procedure. This summarization is an artifact of
the inherent structure of problem solving in the domain of digitalis therapy and the way the
program has been designed. It is not attributable to any sophistication in the explanation
strategies. Similarly, in MYCIN, an attempt was made to make each rule an independent
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"chunk" of medical knowledge so that stating a single rule would be a complete, coherent
explanation.

Unfortunately, program structure is also dictated by implementation considerations
which may obscure the underlying domain-related reasoning. Many operations that are
explicit in the computational procedures would be implicit in the minds of the domain ex-
perts as they solve the problem. For example, in the sample explanation in Figure 1, steps
2.1.1, 2.1.2, 2.1.4, and much of 2.2 refer to the management of variables that keep track
of which sensitivities have been checked and the reasons for dosage reduction. These steps
have much more to do with the internal idiosyncrasies of the program than with medical
reasoning, but they appear in the code and so are described by the explanation routines.

Moreover, because the explanation .is cluttered with implementation details, it may be
more confusing than enlightening to physician-users because it is very difficult for a user
to get an idea of what is really going on. Consider again the example in Figure 1. While
the program is excrutiatingly explicit about its internal bookkeeping, it is not very explicit
about the fact that it is trying to decide whether or not to reduce the dose of digitalis
depending on the status of myxedema and the level of T4. This is only opaquely hinted
at by the phrases "I set the factor of reduction due to myxedema to 0.67" in one case
and "I set the factor of reduction due to myxedema to 1.00" in the other. Referring to no
reduction in the dosage as "setting the factor of reduction to 1.00" may make perfect sense
to programmers, but it is certainly not the way domain experts would express this notion.

3.2.2 Inadequate Natural Language Techniques

The problems discussed in the introduction and identified by the MYCIN implementors in
their analysis of inadequate responses also stem from limitations in the natural language
capabilities of current systems. First, question understanding and interpretation procedures
are limited, thus restricting the kinds of questions that may be asked and the manner in
which they must be phrased. To avoid the difficult problems of inferring the user's intent in
asking a question, MYCIN interprets a user's "Why?" query in only one way even though
it could have a variety of meanings, such as "Why is it important to determine .... ?," "Why
did you ask about that instead of .... ?," "Why do you ask that now?," or "Why does the
conclusion follow from the premises?" All of these interpretations are valid questions about
the system's knowledge and behavior, yet MYCIN always assumes the first interpretation
and does not allow the other questions to be asked. In the sample MYCIN explanation in
Figure 3, when the user asks "Why?" the second time, the system assumes that the user is
asking "Why is it important to determine the category of ORGANISM-l?". But, the user
may really be asking a very different type of question, namely "Why is it the case that a gram
negative, facultative rod not acquired in a hospital setting is likely to be enterobacteriaceae?"3

We have already seen that the causal knowledge needed to answer this question is not
represented in MYCIN. But even if it were, MYCIN could not determine what "why?"
question was being asked in a given context because MYCIN does not view the explanation
session as an on-going dialogue. Each question-answer pair is viewed independently and
references to previous portions of the dialogue can be made only in stilted and artificial
ways, as shown in Figure 3. A model of explanation that addresses this problem is proposed

3 This example is adapted from an example found in [Dav76].
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in Section 6.
Another drawback is that current systems have no mechanism by which to take the user's

feedback into account, i.e., they do not have a means for allowing the user to indicate that
he is not satisfied with a given explanation. They do not explicitly represent user's goals in
asking a question or the explanation strategies used to achieve them. These systems do not
know what implicit assumptions must hold true for the explanation to be understood by the
user or what dependencies exist between the various parts of the text produced. In short,
current systems do not really have an understanding of the explanations they generate.
This limitation makes repairing misunderstood explanations impossible.

Moreover, current systems usually have only a single presentation strategy associated
with each question type, instead of the sophisticated repertoire of discourse strategies that
human explainers utilize. Thus, these systems could not provide alternative or additional
explanations even if they did allow the user to indicate that he would like elaboration or
clarification.

Due to these limitations, users must phrase their questions in a form acceptable to
the system and have little recourse if they do not understand or are not satisfied with an
explanation as it is presented to them by the system.

In the next two sections, we discuss approaches to alleviate some of the limitations we
have identified. First we discuss efforts to explicitly capture the knowledge that is needed to
produce explanations and then we present more sophisticated natural language techniques
for conveying this knowledge to the user.

4 Capturing More Knowledge with Improved Architectures

We have seen that early systems were not able to give abstract explanations of their
problem-solving strategies or to justify their behavior. Researchers realized that in or-
der to achieve these capabilities, their systems would need to represent strategic knowledge
explicitly rather than leaving it implicitly embedded in the domain knowledge, such as in
the ordering of premises in a rule or the ordering of rules in the knowledge base. Two sys-
tems, NEOMYCIN [Cla83a] and XPLAIN [Swa83], have taken the approach of representing
strategic knowledge explicitly and separately from domain knowledge. These systems are
able to produce both abstract and concrete explanations of their reasoning strategies and
the XPLAIN system is able to justify its results in terms of the causal model of the domain.

4.1 NEOMYCIN

NEOMYCIN [CL81] arose out of Clancey's frustration in attempting to adapt MYCIN to a
system that could be used for educational purposes [CSB84], [Cla83b]. Clancey noted that
in or, ir to teach medical students about diagnosis, it was necessary to be able to justify
the diagnostic associations encoded in MYCIN's rules and to explain the overall diagnostic
strategy of gathering information and focusing on hypotheses. As discussed in the preceding
section, this knowledge was not explicitly represented in the MYCIN knowledge base and
therefore could not be explained.

In NEOMYCIN, a domain-independent diagnostic strategy is represented explicitly
and separately from knowledge about the domain - the disease taxonomy, causal and
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METARULE411
IF: the datum in question is strongly associated with the current focus
THEN: apply the related list of rules
TRANS: ((VAR ASKINGPARM) (DOMAINWORD "triggers) (VAR CURFOCUS))

METARULE566
IF: the datum in question makes the current focus more likely
THEN: apply the related list of rules
TRANS: ((VAR ASKINGPARM) "makes" (VAR CURFOCUS)) "more likely"

Figure 5: Two Metarules for the task TEST-HYPOTHESIS

data/hypothesis rules, and world facts. Knowledge of the diagnostic strategy is repre-
sented as a set of tasks, which are meta-level goals, and metarules for achieving these goals.
An ordered collection of metarules defines a generic procedure for achieving a task. Each
metarule has a premise indicating when the metarule can be applied, and an action that
tells what should be done when the premise is satisfied. The action clauses of metarules de-
termine what task should be done next, what domain rule applied, or what domain finding
should be requested from the user. (See [Cla83a] for a detailed discussion of NEOMYCIN
and the organization of its knowledge base.) Figure 5 shows two of the metarules that are
part of the procedure for the task TEST-HYPOTHESIS.

NEOMYCIN can provide abstract as well as concrete explanations. A concrete expla-
nation of problem-solving strategy refers to aspects of the solution to a particular problem
while an abstract explanation articulates a general principle that can be applied in many
different situations. NEOMYCIN's explanations are generated at the level of general strate-
gies, instantiated with domain knowledge when possible, to make them more concrete. To
explain why NEOMYCIN is doing a particular task, the question is first restated as "Why
are we trying to do this task?" Since each task is invoked by a metarule that is part of
a method for achieving some higher-level task, a suitable response may be generated by
citing this higher-level task and the metarule being applied. An example of an explana-
tion produced using this strategy appears in Figure 6. In this example, the current task
is to apply domain rules. The metarule that invoked this task is METARULE566 shown
in Figure 5. In the process of applying one of the rules, the user is asked a question. The
higher-level task that this metarule is trying to achieve is TEST-HYPOTHESIS and the
current hypothesis is that Mary has tuberculosis. Figure 6 shows an example of providing
a concrete explanation. The user may also request an abstract explanation, as shown in
Figure 7.

As with MYCIN, NEOMYCIN users may also ask how a previously mentioned task was
or is being accomplished. An example appears in Figure 8. The explanation strategy for
answering "how" questions presents all of the metarules associated with the task that have
already been completed, as well as any metarule associated with the task that is currently
being executed. Note that the strategy for answering "why" questions states the premise
of the metarule, i.e., the reason the metarule was applicable. The strategy for responding
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14) Does Mary have a history of granulomas on biopsy of the liver,
lymph node, or other organ?

**WHY?

[i.e. WHY is it important to determine whether Mary has a history
of granulomas on biopsy of the liver, lymph node, or other organ?

[19.0] We are trying to decide whether Mary has tuberculosis.

A history of granulomas on biopsy of the liver, lymph node, or other
organ makes tuberculosis more likely.

[back to question 14 .... ]

Figure 6: A Concrete NEOMYCIN Explanation

**ABSTRACT

[i.e. WHY is it important to determine whether Mary has a history

of granulomas on biopsy of the liver, lymph node, or other organ?

[19.0] We are trying to test a hypothesis.

The datum in question makes the hypothesis more likely.

[back to question 14 .... ]

Figure 7: An Abstract NEOMYCIN Explanation
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**HOW 19.0?

[i.e. How are we trying to decide whether Mary has tuberculosis?

We did the following:

[20.1] Applied a rule mentioning a causal precursor to
tuberculosis (tb risk factor; rule525), and

[20.2] Gave thorough consideration to any recent findings.

[20.3] Applied a rule mentioning general evidence for
tuberculosis (focal neurological signs; rule366), and

[20.4] Gave thorough consideration to any recent findings.

[20.5] Applied a rule mentioning general evidence for
tuberculosis (compromised host; rule309), and

[20.6] Gave thorough consideration to any recent findings.

We are now:

[20.7] Applying a rule mentioning general evidence for
tuberculosis (a history of granulomas on biopsy of the liver,
lymph node, or other organ; rule002).

We will next:

[20.8] Give thorough consideration to any recent findings.

[back to question 14 .... ]

Figure 8: A Sample NEOMYCIN Explanation

to "how" questions states the action of the metarule, i.e., what was done.
NEOMYCIN attempts to tailor its explanations to different types of users by using

different terminology depending on the type of user requesting the explanation. Users can
identify themselves as either system or domain experts. Certain general words or phrases
used in the rule translations have been identified as having synonyms in the vocabulary
of the domain and are marked as such. Whenever a marked phrase is encountered while
explaining a strategy, the corresponding domain-specific term will be substituted when the
user has identified himself as a domain expert. For example, in translating METARULE411
shown in Figure 5, the phrase "is strongly associated with" will be substituted for "triggers"
if the user is a domain expert.

4.2 XPLAIN

The XPLAIN system grew out of work done on the Digitalis Advisor. Swartout [Swa8l]
observed that the information needed to justify a program's behavior is precisely that
information which was used by the programmer to implement the program and therefore
what was needed was a way to capture the knowledge and decisions that went into writing
the program in the first place. To do this, Swartout used an automatic program writer to
record this information and thus guarantee that the program understood its own design.
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SYSTEM Please enter the value of serum potassium:

USER Why?

SYSTEM The system is anticipating digitalis toxicity. Decreased serum potassium causes
increased automaticity, which may cause a change to ventricular fibrillation.
Increased digitalis also causes increased automaticity. Thus, if the system ob-
serves decreased serum potassium, it reduces the dose of digitalis due to t -
creased serum potassium.

Please enter the value of serum potassium:

USER 3.7

SYSTEM Please enter the value of serum calcium:

USER Why?

SYSTEM The system is anticipating digitalis toxicity. Increased serum calcium also causes
increased automaticity Thus, (as with decreased serum potassium) if the sys-
tem observes increased serum calcium, it reduces the dose of digitalis due to
increased serum calcium.
Please enter the value of serum calcium:

USER 9

Figure 9: A sample XPLAIN dialogue

Like NEOMYCIN, the XPLAIN system [Swa81] represents problem solving-knowledge
explicitly and separately from domain knowledge. XPLAIN's domain model represents the
facts of the domain. For digitalis therapy, the domain model includes knowledge about
physiological states, reactions to the drug digitalis, and causal relations among them. The
system's problem-solving knowledge is encoded in domain principles that tell the system how
to use its domain model to achieve a goal such as administering the proper dosage of a drug
or analyzing symptoms. Domain principles have three parts: a goal, a prototype method, and
a domain rationale. The goal indicates what task the domain principle's method is capable
of achieving. The prototype method is an abstract method that tells how to accomplish the
goal. The domain rationale is a pattern that indicates at a general level the cases where
the domain principle should be applied. Specific cases are found by matching the domain
rationale against the domain model. This process integrates the "support" knowledge in
the domain model into the development of the expert system. An automatic programmer
successively refines goals into prototype methods using knowledge from the domain model
and leaving behind a record of the steps taken in the development of the program and the
reasons behind them.

Recording the development of the actual low-level procedures from the domain principles
enables the system to generate principled responses to requests for justification. An example
of XPLAIN's capabilities is shown in Figure 9. Note several things from this example. First
the system is capable of explaining that it is asking about the patient's serum potassium
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as part of adjusting the recommended dosage, and that this is important because too high
a dosage of digitalis could interact with the effects of serum potassium level to produce
a dangerous condition. That is, XPLAIN can justify its request for a patient parameter
both by paraphrasing the code and by justifying the parameter's significance in the abstract
model of the domain. This requires an understanding of causal relationships in the domain
(as represented in the domain model) and of how these causal relationships are used in
problem solving (as represented in the domain principles.) Recall that the original Digitalis
Advisor, which had only the knowledge necessary to perform its function (i.e., correctly
administer digitalis) knew how to check serum potassium and reduce the dosage, but did
not know, and therefore could not explain, why it was doing so.

Second, by keeping track of the last few explanations produced, XPLAIN is able to
suggest analogies with previous explanations. When asked about serum calcium, the system
gives a shorter explanation because it knows that it has already explained several of the
causal relationships in the previous explanation of serum potassium. Since the method for
reducing the dose due to serum calcium and the method for reducing the dose due to serum
potassium are derived from the same abstract prototype method, the system can recognize
the analogy between these two findings and draw an analogy to serum potassium when
queried about serum calcium.

Third, XPLAIN, like NEOMYCIN, has a mechanism for tailoring its explanations to
different types of users. Recall that one of the problems with the explanations produced by
the Digitalis Advisor was that they often included many steps that had more to do with pro-
gramming details than medical reasoning. The XPLAIN system tailors its explanations to
different types of users by varying which steps are included in an explanation depending on
the type of user. Viewpoint markers are attached to steps in a prototype method indicating
what types of users the step should be explained to. While generating an explanation for
a step, the system checks the viewpoint attachments to see if that step should be included
in an explanation to the current user. This approach allows the system to separate those
steps that are appropriate for a given audience, such as domain experts, from those that
are not.

4.3 Advantages of Explicit Strategic Knowledge

As NEOMYCIN and XPLAIN have demonstrated, explicit representation of strategic knowl-
edge allows improved explanations to be generated. These systems are able to produce
abstract descriptions of their problem-solving strategies and XPLAIN is able to justify its
behavior. Furthermore, as the example in Figure 9 shows, an abstract representation of
problem-solving knowledge allows the system to recognize when the same strategy is ap-
plied in different situations. This capability allows XPLAIN to produce explanations by
analogy.

In addition, the implementors of these systems have noted that representing control
knowledge explicitly and separately from domain knowledge has made the systems more
modular and easier to maintain. For example, the XPLAIN system has a domain principle
that achieves the goal of chetking for digitalis sensitivities. The domain rationale of this
domain principle specifies the constraints that a finding must meet in order to be considered
a sensitivity. Therefore any new sensitivities that are added to the domain model will
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automatically be checked by this principle. Moreover, Clancey argues that NEOMYCIN's
metarules constitute a domain-independent diagnostic strategy that could be applied to
related problems in other domains. 4

While NEOMYCIN and XPLAIN were significant improvements over their precursors
in terms of explanatory capabilities, much of this improvement came from better and more
explicit representation of their knowledge and not from increased sophistication in their
explanation strategies. These systems still use very simple strategies that do little more than
translate metarules or domain principles. Examples like that shown in Figure 8 demonstrate
that these simple strategies often produce text that is unsuitable for users. The problem with
this explanation is that its structure corresponds too literally to the structure of the method
for achieving the task - applying one rule after another. While the explanation repeats that
it "gave tl.oz. ugh consideration to any recent findings" four times, the explanation does
not make clear the overall strategy of applying rules that strongly conclude about the
current hypothesis (e.g. causal precursors) before applying rules that are weaker indicators
(e.g. general evidence). What is needed is a more sophisticated explanation strategy that
could recognize the similarity in the four rule applications and structure this information
accordingly.

Furthermore, the explanation capabilities of these systems are still very limited and
inflexible. Except for the simple analogies drawn by XPLAIN and a limited capability to
tailor explanations to different classes of users, these systems are not capable of producing
different explanations to different users or in different contexts. There are still important
types of questions that cannot be answered and, except for allowing successive why-questions
and the simple "how" mechanism in NEOMYCIN, these systems cannot handle follow-up
questions in a meaningful way.

5 More Sophisticated Approaches to Explanation
Production

We have seen that richer, more explicit knowledge representation alone is not enough for
producing good explanations. Explanation systems that limit themselves to exploiting clever
ways of traversing, pruning, and translating the system's execution trace do not produce
suitable explanations. We believe that producing good explanations is a complex problem-
solving task requiring its own expertise. We advocate the view that explanation must
be decoupled from the expert system's knowledge representation formalism and problem-
solving activity and that explanation requires its own body of knowledge, in addition to the
knowledge used by the expert system. In particular, explanation requires knowledge about
language, the way language is used to achieve goals, how clauses may be combined to form
a coherent text, how responses may be tailored to different user or situations, and rules of
conversation.

Although some of the inadequacies of earlier systems stem from their limited natu-
ral language understanding capabilities, this paper concentrates on work in text planning
and generation. The reader is referred to [Leh78] for more information about question

4See [Cla83a] and [NSM85] for more dctils.
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understanding and to [CP79], lAPS0], [S181], [Car87], and [LA87] for discussions of how
participants in a conversation can infer one another's goals and plans.

This section reviews work in the field of text generation where researchers have developed
strategies for producing responses to user's queries based on analyses of naturally occurring
text. Section 6 describes our own work in the area of explanation.

5.1 Using Discourse Structures to Generate Explanations

One of our criticisms of the explanation components of previous systems is that the structure
of their explanations followed the structure of the reasoning cc.aponent'z solution to a
problem, rather than obeying rules of discourse structure. In this section, we consider three
efforts that use principles of discourse to generate responses. The principles employed by
these systems were derived from empirical observations of naturally occurring explanations
and are encoded into strategies for producing texts.

5.1.1 TEXT

In the TEXT system [McK82], McKeown addressed the problem of responding to questions
about database entities and structure. From a study of naturally occurring descriptive
texts, she devised domain-independent strategies for responding to the following types of
questions:

1. Request for definition: What is a <e> ?

2. Request for available information: What do you know about <e> ?

3. Request for information about differences between entities: What is the difference
between <el> and <e2> ?

In developing the TEXT system, McKeown identified two problems: 1) deciding what
knowledge is relevant to include in a response, and 2) organizing that information into a
coherent text. The main emphases of the TEXT system were to study how discourse struc-
tures and focus constraints could be used to guide the information retrieval and generation
of multi-sentential responses.

Linguists had previously proposed rhetorical predicates that identify the functions played
by individual clauses in a discourse [Gri75]. McKeown's analysis of naturally occurring
texts showed that certain combinations of rhetorical predicates are more likely to occur
than others and that certain predicates are more appropriate in some discourse contexts
than others. For example, speakers frequently define or describe objects in terms of their
constituent parts in the following way:

1. Identify the object as a member of some generic class or give attributive information
about it.

2. Introduce constituents of the object being defined.

3. Provide characteristic information about each constituent in turn.

4. Provide attributive or analogical information about the object being defined.
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Identification/Attributive
Constituency
Cause-effect* /Attributive*/

{Depth-identification/Depth-attributive
{ Particular-illustration/Evidence}
{Comparison; Analogy/Renaming} }+

{Amplification/Explanation/Attributive/Analogy}

Figure 10: TEXT Constituency Schema 5

To encode these standard patterns of discourse structure, McKeown devised several schemata
that represent combinations of rhetorical predicates. The above pattern is embodied in the
constituency schema shown in Figure 10. McKeown identified four schemata, each of which
could be used to achieve one or more "discourse purposes."

In the TLXT system, discourse purposes correspond to the three question types handled
by TEXT. Associated with each discourse purpose is a list of possible schemata that can be
used to generate a response that will achieve that purpose. For example, to answer a request
for a definition, TEXT can choose one of two schemata: identification or constituency.
Figure 11 shows how TEXT responds to the question "What is a guided projectile?"

When a question is posed to TEXT, the system first selects a subset of the knowledge
base that contains all of the knowledge relevant to answering this question, This subset is
called the relevant knowledge pool. TEXT then chooses a schema based on the discourse
purpose and the contents of the relevant knowledge pool. For example, in responding to
a request for definition, the relevant knowledge pool contains all of the entity's attributes,
superordinates and subordinates. If the relevant knowledge pool contains a rich description
of the object's subordinates and less information about the object itself, TEXT uses the
constituency schema. Otherwise, the identification schema is chosen.

The schemata themselves contain many options and alternatives. To instantiate a
schema, its -omponents are filled-in sequentially by matching the rhetorical predicates
against the propositions in the relevant knowledge pool. When more than one instanti-
ation is possible, the system appeals to a set of constraints about how focus of attention
can shift to select the most appropriate alternative. Although previous work had defined
how focus constraints could aid in understanding texts [Gro77], [Sid79], McKeown was the
first to use focus in text generation to control the choice of what can be said next while still
obeying rules of coherence. When several alternatives for what to say next exist, the focus
constraints dictate selection of the proposition according to the following priorities:

1. Shift focus to a topic just introduced.

2. Maintain the current focus.

sThe "{)" indicate optionality, "/" indicates alternative, "+" indicates that the item may appear 1 or
more times, and "" indicates that the item is optional and may appear 0 or more times.
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(definition GUIDED)

Schema selected: constituency

Predicates instantiated:
(1) identification
(2) constituency
(3) attributive
(4) attributive
(5) evidence
(6) evidence
(7) attributive

(1) A guided projectile is a projectile that is self-propelled. (2) There are two
types of guided projectiles in the ONR database: torpedoes and missiles. (3) The
missile has a target loc .tion in the air or on the earth's surface. (4) The torpedo
has an underwater target location. (5) The missile's target location is indicated
by the DB attribute DESCRIPTION and the missile's flight capabilities are
provided by the DB attribute ALTITUDE. (6) The torpedo's underwater capa-
bilities are provided by the DB attributes under DEPTH (for example, MAX-
IMUM-OPERATING-DEPTH.) (7) The guided projectile has DB attributes
TIMETOTARGETUNITS, HORZRANGEUNITS and NAME.

Figure 11: Sample Response Generated by TEXT

3. Return to a topic previously introduced.

4. Shift focus to a topic with the greatest number of implicit links to the list of topics
just introduced.

The TEXT system produces coherent multi-sentential responses to questions about de-
scription and comparison of entities. Recall that one of the inadequacies of current expert
system explanation facilities is the inability to explain their terminology. The schemas de-
vised by McKeown could be adapted to provide descriptions of the objects in an expert
system's domain of expertise. However, the variety of question types that must be handled
in an expert system environment is significantly richer. Q~ueries to expert systems frequently
fet(iiire explaining or justifying problem-solving knowledge, and thus the discourse analysis
done by McKeown cannot be directly applied to generating such responses.

5.1.2 BLAII

The BILAII system [WeiS0 is capable of providing explanations of its reasoning in the do-
main of U.S. income tax law. BLAIl is primarily concerned with structuring explanations
so that they do not appear too complex, and thus are easy to understand. In designing
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e -- AND e e (e) '

e -* OR e e (e)'
e -* STMT/RSN e e
e - THEN/IF e e
e -* EXAMPLES e e (e)'
e -- ALT e e (e) n

e - simple text

Figure 12: BLAH's Grammar of Explanation

the explanation strategies for BLAH, Weiner studied naturally occurring explanations to
discover their structure. Weiner discovered that the important features in creating under-
standable explanations are: syntactic form, managing the embedding of explanations, and
focus of attention. From this analysis, he compiled a "grammar of explanation." The rules
of this grammar appear in Figure 12.

BLAH is capable of answering three types of questions:

1. (SHOW x) asks whether the assertion x is believed by the system, e.g., Must Herby
file a tax return?

2. (CHOICE x y) asks the system to choose between two alternative solutions, e.g.,
Should I file the long or short form ?

3. (EXPLAIN x) asks the system to explain why some assertion in the knowledge base
is believed, e.g., Explain why Peter is a dependent of Harry's?

When the user asks a question, BLAH's reasoning component is invoked. The output
of the reasoning component is a tree representing a statement and its support. This tree
is produced following the rules of the grammar shown in Figure 12. The non-terminals
represent types of justifications and the terminals represent assertions. For example, in the
process of reasoning about the query (EXPLAIN (PETER IS A DEPENDENT OF HARRY'S)),
BLAH produces the tree shown in Figure 13.

Once the reasoning tree has been produced, the explanation generator translates the tree
into text using templates associated with each assertion. However, before the translation is
done, the explainer may decide to modify the tree in the following ways to make the final
explanation more understandable to the current user:

1. remove all assertions the system can presuppose the user knows from the tree, and

2. determine how much detail should be given in explanation, and if necessary, break up
the tree into subtrees.

In order to reason about what the user knows, BLAH segments its knowledge base into
the system's (i.e., expert's) view and the user's view. The rules and assertions in the user's
view represent a model of the user's knowledge. Any assertion that BLAH can prove using

23



Peter makes Peter. isHarry supports
less than $750 _ee rde under 19 Peter Per

Peter dosPees ageN

not work d 15 Harry provides more

than 1/2 of Peter's

support

Figure 13: Reasoning Tree of "Peter is a dependent of Harry's"

Peter is a dependent of Harry's because Peter makes less than 750 dollars because Peter
does not work and Peter is under 19, in fact Peter is 15, and Harry supports Peter
because Harry provides more that half of Peter's support.

Figure 14: Sample Response Generated by BLAII

only information in the user's view (including both assertions and rules) is assumed to be
known to the user. BLAH deletes such assertions from the reasoning tree. For more details
about this process, see [Wei8O].

After the tree has been pruned of knowledge that the user already knows, BLAII must
decide how to structure the explanation. To understand why BLAII does not simply traverse
the tree from left-to-right translating all of its terminai nodes, consider the explanation that
would be generated from the tree in Figure 13 using this process. This explanation, shown

in Figure 14, is not very understandable because it is difficult to tell which clauses justify
which other clauses. For example, it is difficult to tell whether "Peter is under 19" justifies
the statement "Peter is a dependent of Harry's" or the statement "Peter makes less thani
750 dollars." The explanation is ambiguous and unless the reader has knowledge of the
domain, he cannot disambiguate it. The problem with this explanation is that inforniation
has been lost in going from the hierarchical tree representation to the linear representation
of natural language text. To make the explanation understandable, this lost information
must somehow be put into the English translation. BILAll (toes this by breaking up complex
reasoning trees into subtrees, and adding structural markers to the generated text.

For example, the tree in Figure 13 would be broken up into the subtrees shown in
Figure 15. The final explanation generated by BLAII from these subtrees is shown in
Figure 16. In this explanation, "uh" acts as a structural marker indicating a shift, iii focus of
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less than $750 under 19 Peter
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Peter does than 1/2 of Peter's
not work support

Figure 15: Simplified Reasoning Trees

Well, Peter makes less than 750 dollars, and Peter is under 19, and Harry supports
Peter so Peter is a dependent of Harry's. Uh Peter makes less than 750 dollars because
Peter does not work, and Harry supports Peter because Harry provides more than one
half of Peter's support.

Figure 16: Sample Response Generated by BLAH

attention back to a previously mentioned item. Repetition of clauses, such as "Peter makes
less than 750 dollars," also shifts the focus of attention back to the repeated node. This
explanation is easier to understand than the one shown in Figure 14 because the structural
markers and repeated clauses give the reader the information necessary to establish the
appropriate underlying structure.

5.1.3 ROMPER

From an analysis of transcripts of a radio call-in program in which callers asked the advice
of a financial expert,' McCoy found that expert-caller interactions frequently involve the
expert correcting the caller's misconceptions about objects in the domain or defining terms.
In the ROMPER system, McCoy has taxonomized the types of misconceptions about ob-

'These dialogues were collected and analyzed by Pollack et al. [PHW82].
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USER: I am interested in buying some corporate bonds. Should I get preferred?

SYSTEM: Preferred are not bonds, they are stock. A preferred stock is like a bond in that
both have regular payments of a fixed amount. However, unlike bond payments,
the company is under no legal obligation to pay preferred stock payments. In
addition, preferred stock gives part ownership in the company.

Figure 17: Sample Corrective Response from ROMPER

jects that occur and has devised discourse strategies for producing corrective responses to
misconceptions of each type [McC85a].

An example of the type of response ROMPER is capable of producing is shown in
Figure 17.7 The type of misconception that has occurred in this sample dialogue is a like-
super misconception and it is a kind of misclassification because the user has posited that the
object (preferred) belongs to an incorrect class (bonds). This type of misconception often
occurs when the object and the posited superordinate class share some salient properties,
in this case, regular-timed payments and fixed-amount payments.

Based on her analysis of expert-caller interactions, McCoy noticed that corrective re-
sponses to this type of misconception usually contain the following information:

1. Deny the incorrect classification.

2. State the correct classification.

3. Concede the similarity of the questioned object to the posited superordinate by men-
tioning their common attributes.

4. Override the conceded information by offering features that "define" the object as
belonging to its correct superordinate class.

McCoy encoded this pattern into the schema shown in Figure 18.
ROMPER's schemas differ from those of McKeown's TEXT in several ways. McCoy's

schemas indicate structural relationships between the propositions in a text, but do not
necessarily specify an ordering of the propositions as was the case in TEXT. In addition,
ROMPER's schemas explicitly encode two kinds of information: 1) specification of the
content of each proposition, e.g. "classification," "share-attributes" and 2) information
about the communicative role that each proposition plays in the strategy, e.g. "deny,"
"state," "concede," "override". McKeown's TEXT schemas encode only the first type of
information. Because of the separate and explicit representation of communicative function
and content, McCoy's schemas hold more promise for adapting to dialogue capabilities,
which we discuss in Section 6.

7ROMPER did not take English input or produce English output. We show the translation here for
readability.
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((deny (classification OBJECT POSITED))
(state (classification OBJECT REAL))
(concede (share-attributes OBJECT POSITED ATTRIBUTES1))
(override (share-attributes - POSITED ATTRIBUTES2))
(override (share-attributes OBJECT REAL ATTRIBUTES3))

Figure 18: ROMPER Like-Super Schema

5.2 Tailoring Explanations

Another criticism of existing explanation facilities is that they present the same explanation
to all of the people all of the time. They do not adapt their explanations to the user's
goals, to his knowledge of certain concepts in the domain, to his level of expertise, to
his preferences, or to his perspective. As we move to more sophisticated expert system
frameworks, the problem of selecting what to say becomes more critical, because the richer
knowledge bases that these frameworks support present a broader range of options.

As we observed in the previous section, both NEOMYCIN and XPLAIN had mecha-
nisms to tailor their explanations to different classes of users, but their techniques are very
primitive implementations of stereotypic user models as proposed by [Ric79]; neither is a
general solution. Their simple techniques again place the responsibility for functionality in
the explanation capability on the programmer, since the knowledge base has to be marked a
priori in some way to indicate how it should be explained to different classes of users. This
marking is then fixed for each class. All classes must be defined when the system is built
and all of the knowledge that is to be explained differently to different users appropriately
marked. The explainer has no flexibility in deciding when to use different terminology or
to go to a different level of detail.

In an attempt to address this limitation, some recent research has begun to address the
issues of what dimensions explanations can be varied along; how knowledge representation
must be augmented to handle the various dimensions and their interactions; and how an
explainer can decide when and along what dimension an explanation should be tailored,
and how that interacts with planning text. This section considers systems that have flexible
explanation facilities and the capability to vary their explanations for different users or in
different situations.

5.2.1 Varying Verbosity

Lehnert's QUALM [Leh78] has a mechanism for varying how much information goes into
an answer. The system contains a set of heuristics called elaboration options that allow the
system to elaborate its responses depending on the attitudinal mood of the system, the type
of question asked, and the results of an initial memory search. The attitude of the system is
represented by a value from a partially ordered set of mood values ranging from talkative to
sarcastic. A sample elaboration heuristic is shown in Figure 19.8 This elaboration heuristic

'This is a simplification of the option as it appears in [Leh78].
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Correction/Explanation Option
IF: 1) mood = cooperative or talkative,

2) question type = verification, and
3) initial response = no

THEN: 1) reformulate question into a concept completion
2) look ' r answer to the concept completion question
3) if an answer is found, append it to the "no" response

Figure 19: An Elaboration Option

allows a response to be varied according to the mood of the system as in the following:

Q: Did the waitress give John a menu?

Al: No. (mood = minimally responsive)

A2: No, the hostess gave John a menu. (mood = cooperative)

Note that the use of elaboration heuristics places the responsibility for deciding when
and how to elaborate a response on the explanation strategies. The knowledge base is not
marked a priori to say what knowledge is an elaboration of what other knowledge. These
decisions are made at question/answering time, depending on the type of question asked
and the results of a preliminary memory search.

Only a few of the elaboration heuristics posed by Lehnert were actually implemented in
QUALM, and many of the others were only vaguely specified. Furthermore, the mood of the
system is not sufficient to determine when something should be elaborated. For example,
answer Al above will actually confuse the questioner in certain circumstances (e.g., if the
user is interested in knowing whether or not John has been given a menu and not so much
in who gave it to him.) Therefore, other considerations should be taken into account in
making the decision to elaborate.

5.2.2 Tailoring to User's Perspective

In the ADVISOR system, McKeown et al. are concerned with being able to generate an
explanation tailored to the user's goal as determined from the previous discourse. Being able
to generate tailored explanations requires the system to be capable of generating different
explanations of the same information or advice. She has identified four dimensions of
explanation which can each be varied in an individual response: point of view, level of
detail, discourse strategy, and surface choice [McK84].

McKeown et. al. have concentrated on tailoring explanations to different points of view
[MWM85]. They have developed techniques for representing various points of view in the
system's knowledge base. From an ongoing dialogue, ADVISOR infers the user's goal and
then uses this goal in selecting a point of view for tailoring the content of its explanations.

In ADVISOR's domain of student advising, there are a number of different points of
view that the student may adopt when selecting courses and explanations should be tailored
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appropriately. For example, in answering the question

Q: Should I take discrete math and data structures this semester?

the following response is appropriate if the student's goal is to complete the requirements

as soon as possible:

Al: Yes, data structures is a requirement for al later Computer Science
courses and discrete math is a co-requisite of data structures.

while the following is an appropriate answer if the student is -oncerned about completing
requirements at the proper stage in the program:

A2: Yes, you usually take them both first semester, sophomore year.

However, i either of these is an appropriate response if the student's goal is to be able to
take courses that match his personal interests. A more appropriate response, assuming the
student was interested in Artificial Intelligence, would be:

A3: Yes, if you take data structures this semester, you can take Intro-
duction to AI next semester, and you must take discrete math at
the same time as data structures.

To select a perspective to use in an explanation, ADVISOR infers the user's current
goal from the discourse. McKeown's work on goal inferencing extends previous work in this
area, since her model derives not only the goal of each individual utterance (as in [AP80)
but also infers a higher-level goal relating the goals of a series of utterances.

Once the user's current goal has been inferred, the problem then is to find informa-
tion in the knowledge base that is relevant to the selected perspective. The knowledge
base is organized as intersecting multiple hierarchies, which are linked by the entities that
can be viewed from different perspectives, e.g.,courses in the student-advising domain. For
example, to produce response Al above, the system would extract information about the
relationship between data structures and discrete math from what McKeown calls the re-
quirements hierarchy, while to construct response A2, it would get its information from
the state model hierarchy. This partitioning of the knowledge base allows the explainer to
distinguish between different "types" of information that support the same fact.

Using the information from the appropriate hierarchy, a production system derives a
response to the user's question. Information from one hierarchy will cause different rules to
be applicable than will information from another hierarchy. The reasoning trace that the
production system leaves behind is used as a basis for producing the explanation. Since
ADVISOR uses different knowledge in its reasoning process depending on the user's goal,
the system can produce different responses to the same question, or different justifications
for the same response as dictated by the inferred goal. For example, ADVISOR is capable
of producing responses Al through A3. Each of these provides a different justification for
the same advice tailored to the user's goal.

McKeown's work concentrates on using different points of view in providing justifica-
tions for advice. As part of ROMPER, McCoy [McC85b] has developed a notion of object
perspective for deciding what information to include when providing corrective responses to
misconceptions about objects.
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McCoy points out that while two objects may be considered similar when viewed from
one perspective, they may be very different when viewed from another. Consider the fol-
lowing sample dialogues from [McC85b]:

CLIENT We have $40,000 in Money Market Certificates. One is coming due next week
for $10,000.... I was wondering if you think this a good savings....

EXPERT Well, I'd like to see you hold that $10,000 coming due in a Money Market Fund
and then get into a longer term Money Market Certificate.

CLIENT Hmmm.... well I was just wondering, what about a Treasury Bill instead?

EXPERT That's not a bad idea, but it doesn't replace your Money Market Certificate in
any way - it's an exact duplicate. They're almost identical types of instruments
- so one, as far as I'm concerned, is about the same as another.

Now consider how the same two objects can be seen to be very different when viewed
from a different perspective:

CLIENT I am interested in buying some U.S. Government Securities. Now I was thinking
of Money Market Certificates since they are the same as Treasury Bills.

EXPERT But they're not - they are two very different things. A Treasury Bill is backed
by the U.S. Government. You have to get it from the Federal Reserve. A Money
Market Certificate, on the other hand, is backed by the individual bank that
issues it. So, one is a Government Security, while the other is not.

In the first exchange, both objects are viewed as savings instruments. From this per-

spective the attributes that are important for comparison are interest rates and maturity

dates. From this perspective, Treasury Bills and Money Market Certificates are "identical."

However, in the second exchange, the objects are being viewed in terms of their issuer.
The attributes that are important in this case are the issuing organization and the place of

purchase. From this point of view, Treasury Bills and Money Market Certificates are very
different.

McCoy has devised an alternative technique for representing perspective. In her scheme,
perspective is not represented as different superordinates in a generalization hierarchy (as
was done in McKeown's system). Instead, McCoy represents perspective in a structure that

is orthogonal to the generalization hierarchy. A perspective is a set of attributes and their
corresponding salience values. Salience values (low, medium, high) indicate how important
each attribute is in that perspective. Perspectives must be defined a priori for the objects in
a particular domain and are considered to be a part of the expertise in that domain. Using
this representation, when an object is viewed from a particular perspective, the perspective
essentially acts as a filter on the properties that the object inherits from its superordinates.
Superordinates that do not contribute any of the attributes currently in perspective can be
ignored.

McCoy's system assumes that one perspective is active at any point in a discourse and
that the active perspective could be determined from preceding discourse, although she does
not give a technique for doing so. Perspective is used to provide a similarity measure for
finding an object that is similar to the incorrect object posited in the user model and thus
to classify the type of misconception that occurred.
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** EXPERTISE 3

** HOW DOES HYPERPARATHYROIDISM CAUSE RENAL STONES?

Renal stones are caused by hypercalcemia
Hypercalcemia is caused by hyperparathyroidism

** EXPERTISE 6
** HOW DOES HYPERPARATHYROIDISM CAUSE RENAL STONES?

Renal stones are caused by increased urinary calcium
Increased urinaxy calcium is caused by hypercalcemia

Hypercalcemia is caused by increased bone breakdown
Bone breakdown is caused by increased osteoclast activity

Increased osteoclast activity is caused by hyperparathyroidism

Figure 20: Explanations Tailored to Level of Expertise

5.2.3 Tailoring to User's Level of Expertise

Another consideration to be taken int account when generating an explanation is the
user's level of expertise. Wallis and Shortliffe [WS84] developed a technique for generating
explanations of causal chains that are customized to the user's level of expertise and the
amount of information he would like to obtain. Both the user's level of expertise and his
desired level of detail are represented as an integer ranging from 1 to 10. The user must
declare these two values, although the level of detail can be defaulted to a value compatible
with the user's level of expertise. The user can change his declared level of expertise at
any time during the interaction. He can request more detail after a given explanation by
increasing the detail level and posing the question again.

In order to tailor explanations, the explainer must be able to determine what knowledge
should be explained to users of various levels of expertise and what knowledge is considered
more or less detailed. To encode this information, Wallis and Shortliffe associate a mea-
sure of complexity with each inference rule and concept in their knowledge base. However,
because some concepts are "key" ideas in a reasoning chain and should be mentioned re-
gardless of their complexity rating, a measure of importance is ascribed to each concept as
well. These measures are also represented as an integer between 1 and 10.

When generating an explanation, the user's expertise level and calculated detail values
act as lower and upper bounds on the complexity of concepts that will be included in the
explanation. Terminal concepts (those at either end of a reasoning chain) and concepts
whose importance rating is very high are included even if their complexity measure falls

ou tside the specified range. Rule complexity is also taken into account. If two concepts are
linked by a rule deemed too complex for the current user's level of expertise, canned text
associated with the rule is included instead.

The effect of using the user's level of expertise and a measure of detail on the system's
explanations is demonstrated in the example explanations shown in Figure 20 from [WS82].
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Note that that only variation in these explanations is whether or not a step in the causal
chain is included in the explanation or, in some cases, whether a canned simplified justifica-
tion of a rule will be substituted for one that is deemed too complex. This scheme is based
on the assumption that experts would like to see more of the steps in a causal chain than
novices. We question whether this is actually the case. After all, it seems that experts are
more likely to be able to fill in the details themselves and it is the novices who need all of
the steps spelled out for them.

Clearly there are other considerations that need to be taken into account when distin-
guishing between novices and experts. Paris has begun to explore some of these in her work
on the TAILOR system [Par87]. TAILOR is capable of tailoring descriptions of complex
physical objects to the user's level of expertise. To determine what kind of information
should be included in explanations to users with different domain expertise, Paris ana-
lyzed encyclopedia entries about various complex physical objects [Par85]. For each object,
she compared the descriptions given in adult and junior encyclopedias. She found that in
addition to varying the amount of detail given to different types of readers, the naturally-
occurring descriptions varied according to the kind of information provided. She noted that
if a user is assumed to be very knowledgeable about the domain, objects are described
in terms of their subparts and properties. However, if a user has little knowledge of the
domain, object descriptions focus on how the object works.

To produce tailored descriptions, Paris employs two distinct discourse strategies. For
adults (experts), a part-oriented description is produced using the constituency schema
devised by McKeown for use in her TEXT system (recall Figure 10.) For naive users,
however, Paris formalized a discourse strategy that guides the system in tracing causal
links in the underlying knowledge base to produce the text.

Paris does not assume that users fall into one of several stereotyped classes, e.g. novice
vs. expert. Rather, she views "naive" and "expert" as the extremes of a knowledge contin-
uum, where most users fall somewhere in between since they may have local expertise about
some objects in the knowledge base while being naive about others. The TAILOR system
assumes a user model that contains knowledge of which specific objects in the knowledge
base are known to the user as well as an indication of whether or not the user understands
the "underlying basic concepts." Given such a model, TAILOR can mix the two discourse
strategies to cover cases where the user has significant knowledge about some aspects of the
object being described and is naive about others. For example, Figure 21 shows TAILOR's
description of a telephone. In this example, taken from [Par87], the user model indicates
that the user knows about loudspeakers, but does not know about microphones or how they
work in conjunction as a telephone. Because the user knows about one of the two parts
of the telephone (a receiver is a kind of loudspeaker), the constituency schema is selected.
However, before providing structural information about each of the subparts, the system
consults the user model and learns that the user has no local expertise about transmitters
(a type of microphone) and so the system switches to the process trace strategy to describe
the transmitter.
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The telephone is a device that transmits soundwaves. The telephone has a housing
that has various shapes and various colors, a transmitter that changes soundwaves
into current, a curly-shaped cord, a line, a receiver to change current into soundwaves
and a dialing-mechanism. The transmitter is a microphone with a small diaphragm. A
person speaking into the microphone causes the soundwaves to hit the diaphragm of the
microphone. The soundwaves hitting the diaphragm cause the diaphragm to vibrate.
The vibration of the diaphragm causes the current to vary. The current varies, like the
intensity varies. The receiver is a loudspeaker with a small aluminum diaphragm. The
housing contains the transmitter and it contains the receiver. The housing is connected
to the dialing-mechanism by the cord. The line connects the dialing-mechanism to the
wall.

Figure 21: Description Generated by Mixing Two Strategies

5.3 Dialogue Capabilities

Recall that another limitation of expert system explanation facilities is that they have lim-
ited or no dialogue capabilities. Much of the work done in the area of discourse has focused
on understanding certain aspects of dialogues (e.g., tracking the topic of a dialogue [Gro77],
resolving anaphora [Sid79], handling interruptions [GS86], and recugnizing subdialogues
[Lit85]). The important difference between interpretation and generation is that in inter-
preting a dialogue a system does not have to make choices since the utterances that follow
indicate what choice was made. As we have already seen, generating a response requires
a system to determine what information to include in the response and to choose a strat-
egy for presenting the information. There has been surprisingly little work in the area of
providing question/answering systems with dialogue capabilities. Most systems treat each
question-answer pair independently. The types of follow-up questions halidled are very
limited, and systems that keep a dialogue history and make use of it when responding to
subsequent queries are rare.

Some of the early natural language interfaces to databases were capable of handling
ellipsis and anaphora by saving the previous query and comparing it to the current one
(e.g., [WK72], [Hen77]). If the syntactic and semantic structures matched, the missing
part(s) of the current query would be filled in from its predecessor. In a similar fashion,
Lehnert's QUALM is able to handle dialogue in a very limited way. Again, the last utterance
is saved for handling ellipsis. QUALM has some simple conversational continuity rules that
refer to this last utterance in producing answers to questions such as:

Q: Did John leave for New York?

A: Yes. (John left for New York.)

Q: When? (When did John leave for New York?)

Q: Is John still in charge?

A: No, Bill is. (Bill is in charge.)

Q: Who's he? (Who's Bill?)

Others have begun to look at how keeping a more exteubive discourse history could
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affect the responses given. Swartout's XPLAIN system remembered the last few questions
it had answered and was able to draw simple analogies, like that shown in Figure 9.

As part of her work on the TEXT system, McKeown did some preliminary analysis of
how previous discourse might affect the types of responses generated by the system [McK82].
This analysis considered how :nuch and what information should be kept in the dialogue
history. She considered two options: (1) the system could remember just that each question
had been asked and responded to, or (2) the system could remember that a question had
been asked, the structure used in the response, and the particular information provided.
McKeown discussed how responses to some questions could be affected by each type of
dialogue history. However, no dialogue history was maintained in the implementation, and
none of the suggestions for how responses could be altered if such a history were made
available were implemented. Furthermore, the analysis was limited to considerations such
as avoiding repetitions and generating contrasts or parallels with previous responses. Issues
of how to handle follow-up questions, elaborations, clarifications, or misunderstandings were
not considered. Section 6 describes our approach to some of these questions.

5.4 Explaining Non-Categorial Knowledge

In section 4, we saw that to produce good explanations, the structure of a knowledge base
must reflect explanation concerns. However, structuring the knowledge base properly does
not, by itself, guarantee good explanations. Often a good explanation will only present
selected portions of a knowledge structure. A good explanation facility needs additional
knowledge to know what to present and how to present it.

Throughout this section we have seen approaches to explanation that do not simply
paraphrase structures from a system's knowledge base or execution trace. In these systems,
producing responses is treated as a complex problem in its own right, decoupled from the
system's knowledge base and problem-solving activity. These systems bring additional
knowledge to bear to produce explanations, e.g. knowledge about how coherent object
descriptions are structured, knowledge of what certain types of corrective responses should
include, knowledge about what kind of information should be presented to users of different
levels of expertise, and so forth.

By both structuring domain knowledge carefully and decoupling explanation from problem-
solving, it has been possible to create facilities that explain problem-solving strategies which
were previously considered "unexplainable", namely problem-solving strategies using non-
symbolic approaches such as Bayesian decision theory or heuristic evaluation functions. In
the following section, we describe the explanation facility for the QBKG system which uses
an evaluation function to make its decisions. For a discussion of how explanations may be
produced from a system using decision theory see [Lan87].

5.4.1 The QBKG System

The QBKG system [BA83] is a backgammon-playing program whose knowledge of backgam-
mon is encoded in a heuristic evaluation function. In order to determine the best move to
make, QBKG applies this function to each of the legal moves from the current position and
selects the move which maximizes heuristic value. Once QBKG has selected a move, the
user is free to ask "Why did you make that move instead of this move?" In order to answer
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Figure 22: Structure of QBKG's Evaluation Function

this question, QBKG must be able to examine the differences in the values of the evaluation
function for the two moves and decide first, when quantitative differences in the evaluation
function represent significant differences and wha ..... cn Lf t.evaluation function
contribute to these significant differences, and second, how quantitative differences should
be expressed in non-mathematical natural language.

To allow the system to produce such explanations, the explainer must have access to the
various components that make up the evaluation function. Moreover, it is crucial that the
internal structure of the evaluation function correlates with the structure of backgammon
knowledge in a way that is meaningful to people. As shown in Figure 22, QBKG's evaluation

function is represented as a hierarchical structure. At the leaves of the tree are primitive ob-
servations which are directly obtainable from the current board position, e.g. MyPipcount,
YourPipcount. The primitives are combined into meaningful concepts using various math-

ematical operators. For example PipDifference is formed by subtracting YourPipcount
from MyPipcount. Related concepts are collected higher in the tree by weighting each con-
cept appropriately and summing the results to produce a new concept. For example, the
level just below the top of the tree is made up of the three concepts Blocking, Tactical,
and Positional. The top node in the hierarchy represents the heuristic value, Heur, of
making a given move.

The fundamental assumption of the explanation process is that important differences
between two moves will be reflected by "large"9 differences in the values of the highest level

9 How QBKG decides what differences are large and small in a given context is described in [BA821 and
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concepts that are related to the differences. To produce a comparison between two moves,
the system searches down the tree until it reaches a level where a significant difference is
found and focuses on the differences in the components at this level. So for example, if
the differences for the Blocking and Positional concepts are small, while the difference
in the Tactical concept is large, the commentary will focus on comparing tactical aspects
of the two moves. Backgammon knowledge related to blocking and positional aspects is
assumed not to be relevant and will not be mentioned. In describing the magnitude of the
differences, QBKG breaks the space of possible values for each concept up into six classes
ranging from "not significantly" to "vastly".

A sample explanation produced by the QBKG system is shown in Figure 23. Since
which high level concepts are relevant typically depends on who is ahead in the game and
by how much, QBKG's commentaries always begin with a statement of its opinion as to
which player has the advantage (determined from a computation of the expected value of
the game) and by how much (based on PipDifference). This corresponds to Part 1 of
the sample explanation. Next, as illustrated in Part 2, QBKG makes a statement about
the relative worth of the two moves, based on the difference in the value of Hour and some
knowledge about the range of possible Heurs in this position. Part 3 is the result of the
focusing mechanism. The crucial issue of stopping Black from making an advanced point
(AdvPoint) is discovered and reported while irrelevant differences between the moves, such
as the added risk that White may be hit, are ignored. In the sample dialogue, the bracketed
numbers in part 3 are reference number by which the user may request further commentary
on the specified topics. QBKG responds to such requests by examining the evaluation
function with the selected topic as the root of the search tree.

Note that the problem of deciding which differences are significant and should be men-
tioned in a given context is not limited to systems whose knowledge is encoded in evaluation
functions. This problem is faced by systems using symbolic knowledge representations as
well. In a symbolic system, while it is trivial to determine when the values of a given at-
tribute of two objects are different, the problem of whether or not that difference is relevant
in any given context remains a difficult one. Recall the discussion of in Section 5.2.2 and the
difficulty faced by McCoy's ROMPER in determining whether or not two objects should
be considered similar from a particular perspective. We return to this problem again in
Section 6.2.2.

The results of efforts such as the QBKG system are important because they give us
insight into how the behavior of non-symbolic representations may be explained in a non-
quantitative way. This is especially important because many problems in domains such
as medicine cannot be adequately solved without appeal to inherently quantitative notions
such as uncertainty and tradeoffs [LFT*87]. Many problems which resisted solution using
symbol-based reasoning systems are now being easily solved with connectionist architectures
and results such as those of the QBKG system provide insight as to how we might explain
the behavior of these alternative reasoning paradigms.

more extensively in [BA831.
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1 2 3 4 5 6 Black 7 8 9 10 11 12

24 23 22 21 20 19 White 18 17 16 15 14 13

(1) In the given position, White is far ahead in the race, and has
a winning advantage, with substantial gammon chances.

(2) The actual move, 17-23,23-24 (Move 1), is much better than the
suggested move, 12-18, 17-18 (Move 2).

(3) There is nothing to recommend Move 2. The advantages of Move 1 are:
- vastly better chances of keeping Black from making an

advanced point [1].
- very much better attack by White [2].

Figure 23: QBKG's Commentary Comparing Two Moves

6 A Reactive Approach to Explanation

By and large, the approaches described in the previous section view the problem of gener-
ating responses as a one-shot process, i.e., they have one chance in which to give the user
a correct response that he will understand completely and will not cluse him to make any
incorrect inferences. At the extreme are those who view text planning as a problem with a
derivably "correct" solution, i.e., as a problem to plan a response that will create all and
only the correct information in the mind of the hearer. For example, when planning a re-
ferring expression, Appelt's KAMP system [App8l] attempts to "prove" that as a result of
the referring expression, the hearer will be able to successfully identify the correct object in
the world. This approach requires a complete and correct model of their hearer, including
not only all of the facts he believes, but also the reasoning strategies he uses in drawing
inferences. But is this realistic? Sparck Jones has questioned not only the feasibility of
acquiring such a model, but also of verifying its correctness, and the tractability of utilizing
such a model to affect reasoning and generation of responses [Spa84].
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In addition, we question whether such a model is psychologically valid. That is, when
people explain things to one another, do they take into account everything their listener
knows and all of the inferences he is likely to make as a result of their utterances? If so,
one would expect that most interactions proceed from one topic to another, with listeners
always understanding what the speaker has said. However, this is inconsistent with the
results of analyses of naturally occurring dialogues. In order to determine what type of
interface an expert system should ideally provide, Pollack et al. have studied a "naturally-
occurring" expert system - a radio talk show in which callers request the advice of a financial
expert - and have found that user-expert dialogues are best viewed as a negotiation process
(PHW82]. They found that callers rarely stated a problem and listened passively to the
expert's advice. On the contrary, they found that the caller and expert often needed to
negotiate the statement of the problem to be solved as well as a solution that the caller
could understand and accept.

In our own work on explanation, we too have examined samples of naturally-occurring
dialogues from several different sources: tape-recordings of office-hour interactions between
first year computer science students and their teaching assistants (in which students asked
questions about programming concepts and constructs); protocols collected while building
the Program Enhancement Advisor [NSM85] of programmers interacting with a mock expert
system (in which LISP experts recommended improvements to a user's program and the
user was free to ask questions about these recommendations); transcripts of the radio talk
show collected and analyzed by Pollack et al. (in which callers ask the advice of a financial
expert); and transcripts of electronic mail dialogues collected by William Mann [Rob84] (in
which system users present their problems to computer operators and request assistance).

We present two examples from the data, and then state our overall observations.

DIALOGUE 1

[The student and teacher are discussing an assignment to implement an infix calculator
using two stacks (arrays) to keep track of the operators and numbers read in. The
student is unsure about whether she should store the operator or its precedence on the
operator stack.]

STUDENT In the array, for each element, do you store the operator or the precedence?

TEACHER You store the operator.

STUDENT Only?

TEACHER Well, you can find out the precedence, right? From any operator you can find
out the precedence. Ok? From the precedence, can you find out the operator?

In this dialogue, the student asks a follow-up question to resolve an incompatibility between
her belief (that the precedence must be stored) and the expert's response (that implies it
need not be stored.) The expert then elaborates by giving a reason to justify his previous
response. Clearly, the expert does not have a complete model of the listener; if he had, he
would have anticipated the listener's need for the elaborated explanation and given it the
first time around.

DIALOGUE 2
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TEACHER OK, so what is it, it's using stacks, right?

STUDENT Ya, well, cause, urn, aren't we supposed to use linked lists?

TEACHER You don't have to use linked lists. You don't.

STUDENT But OK. You said stacks, right?

TEACHER In LISP we implemented stacks as linked list. In C we can implement stacks as
an array.

STUDENT Wait, in LISP...

TEACHER In LISP, we implemented, past tense, implemented stacks as linked lists. Right?
In C, we can do it anyway we want. We can implement it as linked lists or as
arrays, uh, I don't know any obvious data structures after that. But, um, you
can use a linked list or an array. I would use an array, personally.

In this dialogue, the student does not understand the difference between the general
concept of a stack as a way of managing data and its implementation using a particular
data structure. The teacher thinks he has cleared up her misunderstanding with his first
explanation, but he has not as indicated by the student's "Wait" and hesitation. The
teacher elaborates on his earlier response by emphasizing the point he made in the previous
explanation, and then elaborating on the notion that a stack can be implemented using
various data structures. So, we see that systems must be able to offer further elaborations

of the responses or alternate explanations, even when the user is not very explicit about
what aspect of the explanation was not clear.

From our analysis the data, we have made several observations:

" Experts do not have a detailed model of the user. From the dialogues we examined,
it is clear that the expert does not have a complete and correct model of the user.
While we can safely assume that the expert has some model of the user, it seems that
since many and varied users are likely to seek his help, this model is more likely to be
a stereotypic model that may be incomplete or incorrect for any given hearer than a
detailed model of any individual. Yet, as the dialogues show, the user and the expert
are able to communicate effectively.

* Users frequently do not fully understand the expert's response. Users rarely stated a
problem, received a result or explanation, and then left, satisfied that they understood
and accepted the expert's explanation. The expert frequently found the need to define
terms or establish background information in response to feedback that the listener
did not completely understand the response.

" Users frequently ask follow-up questions. Users frequently requested clarification, elab-
oration, or re-explanation of the expert's response. In some cases, follow-up questions
take the form of a well-articulated question, either to request justification of a previ-
ous response; to ask the expert to compare the expert's solution with an alternative
solution the user proposes; to request the definition of a term used in the previous
explanation; to resolve inconsistencies between what the user believes about the do-
main and the information included in the expert's response; or to make certain that
the expert has taken all of the necessary constraints into account.
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* Users often don't know what they don't understand. Users frequently could not artic-
ulate a clear follow-up question. In many cases, the follow-up was vaguely-articulated
in the form of mumbling, hesitation, repeating the last few words of the expert's re-
sponse, or simply stating "I don't understand." Often the expert does not have much
to go on, but must still provide further information.

Thus, we see that there is a real disparity between what the data reveals, on the one
hand, and the explanation facilities that current systems provide and the assumptions they
make about how users interact with experts, on the other. By taking a one-shot view of
explanation production, current systems have overemphasized the role of user modelling,
while ignoring the rich source of guidance that people use in producing explanations, namely
feedback from the listener. In our own work, we have abandoned the one-shot assumption
in order to make use of that guidance.

We believe that a reactive approach to explanation is required - one in which feedback
from the user is an integral part of the explanation process. A reactive explanation facility
should include the ability to:

" monitor the effects of its utterances on the hearer,

" recover if feedback indicates the listener is not satisfied with the response,

" answer follow-up questions, taking into account previous explanations - not as inde-
pendent questions,

" offer further explanations even if the user does not ask a well-formulated follow-up
question, and

" make use of information available in the user model if it exists, but not require it.

6.1 A Reactive Explainer

We have built an explanation component for an expert system which addresses these issues.
To provide the capabilities described above, we:

" plan responses such that the intentional structure of the responses is explicit and can
be reasoned about,

" use that intentional structure, together with the user's feedback to provide the con-
versational context needed to plan follow-up explanations,

* taxonomize the types of (follow-up) questions that are asked and understand their
relationship to the current context, and

" provide flexible explanation strategies with many and varied plans for achieving a
given discourse goal.

Our explanation generation facility is part of the Explainable Expert Systems (EES)
framework [NSM85]. When an expert system is built in EES, an extensive development
history is created that records the goal structure and design decisions behind the expert
system. This structure is available for use by the explanation facility.

We have used EES to construct a prototype expert system, called the Program Enhance-
ment Advisor (PEA) [NSM85), which we are using as a testbed for our work on explanation
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Figure 24: Architecture of Explanation System

generation. PEA is an advice-giving system intended to aid users in improving their Com-
mon Lisp programs by recommending transformations that enhance the user's code' ° . The
user supplies PEA with the program to be enhanced. PEA begins the dialogue with the
user by asking what characteristics of the program he would like to improve. The user
may choose to enhance any combination of readability, maintainability, and efficiency. PEA

then recommends transformations that would enhance the program along the chosen di-
mensions. After each recommendation is made, the user is free to ask questions about the
recommendation.

An overview of the explanation generation facility (and its relation to the PEA expert
system) is shown in Figure 24. To interact with the user, the expert system posts a discourse
goal (e.g. persuade the hearer to do an act, describe an entity) to the text planner. A
discourse goal may be posted as a result of reasoning in the expert system or as a result of
a query from the user (see Figure 24). User queries must first be interpreted by the query
analyzer. Even though we assume the user poses queries in a stylized notation,11 ambiguities
may still arise. An example of an ambiguous follow-up question and the process we use to
disambiguate it appears in Section 6.2.1.

Using a top-down hierarchical expansion planning mechanism [Sac75], the text planner
plans utterances to achieve discourse goals. When a discourse goal is posted, the text
planner searches its library of explanation strategies looking for strategies that can achieve
it. A strategy is selected and may in turn post subgoals for the planner to refine. Planning

10 PEA recommends transformations that improve the "style" of the user's code. It does not attempt to
understand the content of the user's program.

"To avoid the myriad problems of parsing English-input, we require that the user's questions be posed in
a stylized language.
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continues in this fashion until the entire plan is refined into primitive operators, i.e. speech
acts such as INFORM, RECOMMEND.

As the system plans explanations, it keeps track of any assumptions it makes about
what the user knows as well as alternative strategies that could have been used to achieve
the discourse goals. The result is a text plan for achieving the original discourse goal. This
text plan is recorded in the dialogue history and passed to the Penman text generation
system [MM83] for translation into English.

After a response has been generated, the system awaits feedback from the user. This
feedback may be a follow-up question (e.g. "Why?", "What is a generalized-variable?"),
an indication that the user does not understand the system's response ("Huh?"), or an
indication that the user understands and has no follow-up question ("Go Ahead"). The
query analyzer interprets this feedback and either returns control to the expert system, or
formulates the appropriate discourse goal and passes it to the text planner to produce a
response.

If the user asks a follow-up question or indicates that he does not understand the ex-
planation, the system examines the dialogue history to determine how to respond. The
information contained there concerning the goal structure of the explanation, assumptions
made during its generation, and alternative strategies, is necessary in disambiguating follow-
up questions, selecting perspective when describing or comparing objects, and providing
furthe: explanations even when the user does not ask a well-formulated follow-up question.

6.2 Examples

Next, we present several example dialogues and discuss how our approach handles them.
These examples were chosen to illustrate how our approach solves some of the problems
described in earlier sections.

Consider the sample dialogue with our system shown in Figure 25. While enhancing
maintainability, the system recommends that the user perform an act, namely replace setq
with setf.'1 The user, not immediately convinced that this replacement should be done,
asks "why?". The query analyzer interprets this question and posts the goal: (PERSUADE
S H (GOAL H Eventually(DOIE H replace-i))) where S is the speaker, H is the hearer, and
replace-i is the act of replacing setq with setf. This is a goal to persuade the user to
perform replace-i. Discourse goals are represented in terms of the effects that the speaker
intends his utterance to have on the hearer. 13

When a discourse goal is posted, the text planner searches for operators capable of
satisfying it goal, i.e. all operators whose Effect matches the goal. Each plan operator also
contains a constraint list, which limits the applicability of the operator; a Nucleus, which is
a discourse goal for the main topic to be expressed; and optionally, a list of Satellites which
are discourse goals that express additional information needed to achieve the Effect of the
operator.

12In many instances PEA is capable of performing the transformation. In such cases, while the actual
replacement is done by the system, the user's approval is required.

' 3 Following Hovy [Hov88], we use the terminology for expressing beliefs developed by Cohen and Levesque
in their theory of rational interaction [CL85]. Space limitations prohibit an exposition of their terminology
in this paper. We provide English paraphrases where necessary for clarity.
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SYSTEM What characteristics of the program would you like to enhance?

USER Maintainability.

SYSTEM You should replace (setq x 1) with (setf x 1).

USER Why?

SYSTEM I'm trying to enhance the maintainability of the program by applying transfor-
mations that enhance maintainability. Setf-to-setq is a transformation that
enhances maintainability.

USER Why?

SYSTEM Transformations that enhance maintainability are defined as transformations
whose right-hand-side use is more general than its left-hand-side use. Setf can
be used to assign a value to any generalized-variable. Setq can only be used to
assign a value to a simple-variable.

Figure 25: Sample Dialogue 1

EFFECT: (PERSUADE S H (GOAL H Eventually(DONE H ?act)))
CONSTRAINTS: (AND (GOAL S ?goal)

(STEP ?act ?goal)
(BMB S H (GOAL H ?goal)))

NUCLEUS: (FORALL ?goal (MOTIVATION ?act ?goal))

Figure 26: Plan Operator for Persuading User to Do An Act

One of the plan operators that matches the current goal is shown in Figure 26.14 In-
formally, this plan operator states that if an act is a step in achieving some domain goal(s)
that the hearer shares, then one way to persuade the hearer to do the act is to motivate
the act in terms of those goals. More formally, this operator's constraints require that there
be a ?goal such that: ?goal is a goal of the system, replace-i is a step in achieving ?goal,

and the speaker and hearer mutually believe that ?goal is a goal of the hearer. In order
to bind ?goal, the text planner examines the expert system's goal structure. The system

assumes that the user shares its top-level goal, enhance-program, since he is using the sys-
tem to perform that task. Furthermore, since the system asks what characteristics the user
would like to enhance, the system can assume that the user shares the goal of enhancing
those characteristics; in this case, enhance-maintainability. The information that the

14 (BMB S H x) should be read as "S believes that S and H mutually believe x." Our plan language makes
use of Rhetorical Structure Theory [MT88], a descriptive theory characterizing text structure in terms of
the relations (e.g. MEANS, MOTIVATION) that hold bctween parts of a text. A detailed description of the plan
language is beyond the scope of this paper, see [MP88].
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EFifECT: (MGTIV.,TION .act 7goal)
CONSTRAINTS: (AND (GOAL S ?goal)

(STEP ?act ?goal))
NUCLEUS: (INFORM S H ?goal)
SATELLITES: (((MEANS ?goal ?act)))

Figure 27: A Plan Operator for Motivating an Act

user shares these two goals is included in the user model. In order to avoid explaining
parts of the reasoning chain that the user is familiar with, the most specific goal is chosen.
Once the constraints have been satisfied, the only possible binding for the variable ?goal is
enhance-maintainability.

Once a plan operator has been selected, the planner instantiates it by posting its Nucleus
and required Satellites as subgoals to be refined. In this case, since there is only one binding
for ?goal, the single subgoal (MOTIVATION replace-i enhance-maintainability) is posted.
One strategy for satisfying this goal, shown in Figure 27, is to inform the hearer of the
goal that the system is trying to achieve (the Nucleus) and then to establish that the act
in question is part of the means for achieving the goal (the Satellite). These subgoals are
eventually refined to primitive speech acts. The final text plan, shown in Figure 28, is added
to the dialogue history and passed to the generator which produces the response shown in
the example dialogue.

6.2.1 Disambiguating A Follow-up "Why" Question

After this response is presented, the user asks "why?" a second time. At this point, there
are several possible interpretations of this question, including:

II Why are we trying to enhance the maintainability of the program?

12 Why are we trying to enhance the maintainability of the program by applying transfor-
mations that enhance maintainability? (as opposed to enhancing the program via some
other method)

13 Why is setq-to-setf a transformation that enhances maintainability?

This example was constructed to parallel the problematic MYCIN example of Figure 3.
Recall that in cases such as this, MYCIN always assumes that "why" is asking why the
system is trying to achieve the higher-level goal, corresponding to interpretation Il. This
interpretation is often inappropriate. Users are frequently asking for justification of the
underlying knowledge, corresponding to 13. MYCIN cannot decide among alternative in-
terpretations because it does not maintain a dialogue history and does not understand the

responses it generates.
Resolving ambiguity requires: 1) identifying candidate interpretations, and 2) choosing

among them. When multiple interpretations are suggested, our system chooses among them
using relevance to the current focus of attention in the dialogue and knowledge about what
the hearer knows. This knowledge is embodied in the following two heuristics:

Hi: follow immediate focus rules (continuing on the same topic is preferred over returning to
a previously mentioned topic, [Sid79], [McK82].)
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(PERSUADES H (GOAL H Ev (DONE H replace 1))) c ................ *global-context*

(MOTIVATION replacel enhancel)

(INFORM S H enhancel) (MEANS enhancel replacel)
*Im trying to enhance the maintainability NS
of the program*

(INFORM S H applyl) (BMB S H (STEP replacel applyl))
'applying transformationa that enhance maintainabillty"

N

(ELABORATE-GENERAL-SPECIFIC applyl apply2)

replace 1 = replace SETQ with SETF *local-context* N
enhance 1 - enhance maintainability of program
applyl = apply transformations that enhance maintainability .(N RSHisaeo...
apply2= apply SETQ-to-SETF (INFORM S H (instance-of C2 0)
ci = transformation that enhances maintainability *SETQ-to-SETF is a transformation that
c2 SETQ-to-SETF
N = Nucleus enhances maintainability'

S : Satellite

Figure 28: Completed Text Plan for Persuading the User to Replace SETQ with SETF

H2: Don't tell the user things he already knows.

Although the tasks of identifying possible interpretations and selecting among them are
distinct, it is computationally inefficient to first identify all interpretations and then choose
among them, as there may be many possible interpretations. Our implementation creates
likely interpretations first, and then uses heuristics to rule them out. If an interpretation
cannot be ruled out, it is chosen as the interpretation of the user's question and a response
is generated. Of course, if our interpretation is incorrect, the user can still recover by asking
a follow-up question.

We have found that focus of attention (H1) is a powerful heuristic for ordering the gen-
eration of likely interpretations. In the current example, the most recent focus of attention
(indicated by the *local-context*) is the statement Setq-to-setf is a transformation
that enhances maintainability. The system thus infers that the question concerns the
rationale behind this statement, unless H2 rules that interpretation out. For example, that
interpretation could be ruled out by H2 if the system inferred (based on the user model)
that the user already knew why setq-to-setf enhances maintainability.

If the first interpretation is ruled out, the system uses the next most recent focus of
attention 5 to form the next possible interpretation In this example, that focus refers to the

' 5The text plan records the order in which topics appear in the explanation. This information is used to
derive foci of attention in order.
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SYSTEM What characteristics of the program would you like to enhance?

USER Maintainability.

SYSTEM You should replace (setq x 1) with (set:! x 1).

USER What's the difference between sett and satq?

SYSTEM Setf can be used to assign a value to any generalized-variable. Setq can only
be used to assign a value to a simple-variable.

USER What is a generalized-variable?

SYSTEM Simple-variables are storage locations named by symbols. This concept can be
generalized to a storage location that can be named by any accessor function.
These storage locations are called generalized-variables.

USER Huh?

SYSTEM For example, the car and cdr of a cons are generalized-variables, named by the
accessor functions car and cdr. Other examples are an element of an array or
a component of a structure.

Figure 29: Sample Dialogue 2

means by which the enhancement is being achieved (i.e. by applying transformations
that enhance maintainability). This leads to interpretation 12. If that interpretation
were also ruled out, the system would continue on in this fashion until it found an acceptable

interpretation or reached the global context, which, in this case, is the top node in the text
plan.

It is important to note that the local and global context, and therefore focus of attention,
are derived from the system's statement, not the user's. The user simply types "why?" in
his first two queries in the dialogue; context comes from the response generated by the
system. Until now, much work has concentrated on building discourse models that keep
track of the user's goals and plans - both domain goals [Car83], [MWM85] and discourse
goals [Lit85]. Little work has been done on keeping track of the system's discourse goals and
the plans it uses to achieve them (although current work by Grosz and Sidner addresses this
issue for the purposes of analyzing dialogues [GS86].) By recording the system's discourse
goal and the plan that was used to produce a response, as well as the user's query, our
system is able to track conversational context.

6.2.2 Using Context to Select Perspective

Consider the dialogue shown in Figure 29 in which the user asks "What's the difference
between setf and setq?" There are many possible answers to this question if it is considered

in isolation:

1. Setf has the function name "setf". Setq has the function name "setq".
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2. None, both can be used to assign a value to a variable.

3. Setf is a macro. Setq is a special form.

4. Setf's first argument must be a generalized variable. Setq's first argument must be

a simple variable.

5. Setf can be used to assign a value to any generalized variable. Setq can only be used
to assign a value to a simple variable.

Any sophisticated knowledge base representing these concepts will contain much infor-

mation about setf and setq. In some ways these two constructs are alike, in some ways
they are very different. Deciding which attributes are relevant in which context is a diffi-
cult problem. In her work on correcting object-related misconceptions, McCoy [McC85a]
recognized this problem and developed the notion of object perspective, as described in Sec-
tion .5.2.2. McCoy assumes that the various perspectives an object can be viewed from
are part of the domain knowiedge -nd must be defined a priori as part of the knowledge
engineering task. In planning a corrective response, she assumcs that the perspective to be
used in describing the objects the user is confused about is given. She does not provide a
means for deciding which attributes belong to a given perspective or which perspective is
active at any point in the conversation.

McKeown et al. [MWM85] suggest that the user's goals should be one factor that in-
fluences the choice of perspective. Each perspective that an object can be viewed from is
indexed by user goals. The system infers the user's potential goal from a series of the user's
utterances and uses this goal to determine the perspective that should be used to tailor a
response. However, in the last example dialogue, the proper perspective to be used in an-
swering the question cannot be inferred from the user's utterances. Instead, the perspective
comes from the system's recommendation, the shared goal (enhance-maintainability)
and the system's plan for achieving that goal (apply transformations that replace
specific constructs by constructs with more general usage.)

One of the problems with previous systems that make use of the notion of perspective is
that the perspectives must be defined a priori. In our system, we do not wish to pre-define
which attributes belong to which perspective, but instead to determine which attributes are

relevant from the current context: the topics under discussion, the current discourse and
domain plans, and the goals that these plans serve. Whether or not an attribute is relevant
in the current context is determined by what role it plays in the plan.

In the current example, the system determines the relevant differences in the following
way. From the dialogue history, the explainer determines that it has just recommended re-
placing setq with setf. It then examines the expert system's problem-solving knowledge,
to find the shared goal that caused this recommendation to be made, namely enhance
maintainability and determines what roles setq and setf play in achieving the goal
enhance-maintainability. In this case, the system is enhancing maintainability by ap-

plying transformations which replace a specific construct with one that has more general
usage. Setq has a more specific usage than setf and thus the comparison between setq
and setf should be based on the generality of their usage. The system thus generates the
response shown in Figure 29.
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EFFECT: (BMB S H (hNUW H ?concept))
CONSTRAINTS: (AND (SUBCLASS ?sub-concept ?concept)

(BMB S H (KNOW H ?sub-concept))
(IMMEDIATE-SUBCLASS ?concept ?super-concept))

NUCLEUS: ((SETQ ?diffs (ESSENTIAL-DIFFERENCES ?sub-concept ?concept))
(BMB S H (DETAILS-OF ?subconcept ?super-concept ?diffs)))

SATELLITES: (((ABSTRACTION ?sub-concept ?concept ?super-concept ?diffs)))

Figure 30: Plan Operator for Describing an Object by Abstraction

6.2.3 Answering a Vaguely Articulated Follow-Up Question 16

In Figure 29, the user then asks the question,"What is a generalized-variable?". The query
analyzer interprets the question and posts the discourse goal (BMB S H (KNOW H generalized-

variable)), i.e. the speaker wishes to achieve the state where the speaker and hearer mu-

tually believe that the hearer knows the concept generalized-variable.

The system has severa' plan operators for achieving such a goal. It may describe a

concept by describing its attributes and its parts, by drawing an analogy with a similar

concept, by giving examples of the concept, or by generalizing a concept the user is familiar

with. The plan operator for the latter is shown in Figure 30.
To choose from among these candidate plan operators, the planner has several selection

heuristics, including:

SHIl Prefer operators that require making no assumptions about the hearer's beliefs.

SH2 Prefer operators that make use of a concept the hearer knows.

SH3 Prefer operators that make use of a concept mentioned in the dialogue history.

In this case, the user model indicates that the hearer knows the concept simple-variable.

Hence the operator in Figure 30 requires making no assumptions about the hearer's knowl-

edge, makes use of a concept the user knows, and uses a concept previously mentioned in

the dialogue. Thus it is ranked highest by the plan selection heuristics. The final text

plan for this example first describes simple-variables and then abstracts this concept

to introduce generalized-variables. This produces the response shown in the sample

dialogue.
The user then indicates that he does not understand this explanation with the vaguely-

articulated follow-up, "Huh?". From our analysis of naturally occurring dialogues, we
devised a set of recovery heuristics for responding when a user indicates misunderstanding,
but does not ask a well-formulated question. These include:

RHI If the discourse goal is to describe a concept, give example(s).

R112 If the discourse goal is to describe a concept, and there is an analogous entity that the
hearer knows, draw an analogy to the familiar concept.

RH3 If another plan exists for achieving the discourse goal, try it.

RH4 Expand any unexpanded optional satellites in previous plan operators. 17

"The example described in this section is discussed more fully in [Moo89].
"Plan operators may contain optional satellites. Depending on other considerations during plan expan-

sion, some of these may not be expanded. See [MS88].
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RH1 and RH2 apply in the context of a particular discourse goal, namely describing a
concept, while the other heuristics are more general. The system tries to apply its most
specific knowledge first. In this case, RH1 applies and the explainer recovers by giving
examples.

This example brings up another interesting point, since it begins with the the user asking
about a term used by the system. All explanation systems face the problem of phrasing
their explanations in terms their users will understand. Without a complete and correct
user model, the only way for a system to guarantee that the terms used in its explanations
will be understood is for the system to laboriously ask the user if he is familiar with each
term before it is used. This is the only recourse available to one-shot systems. However,
because our system is able to elaborate or clarify previous explanations, our system can
make assumptions about whether or not the user knows a certain term and recover later if
feedback indicates the explanation was not understood.

As illustrated in Figure 30, constraints on plan operators often refer to the state of
the hearer's knowledge. The user model includes the domain concepts and problem-solving
knowledge, i.e. goals and plans, assumed to b- known to the current user. However, the
system does not require that this model is be either complete or correct. Therefore, the
user model may contain concepts the user does not actually know or omit concepts the user
does know. To satisfy a constraint on an operator, the system may assume that a concept
is known to the user even if it is not indicated in the user model. As described above, when
such an assumption is made, the selection heuristics give the operator a lower rating. If the
operator is selected, the fact that an assumption was made is recorded in the plan structure.
The system must keep track of such assumptions because these are likely candidates if a
misunderstanding ocurs later. This leads to another recovery heuristic:

RH5 If any assumptions were made in planning the last explanation, plan responses to make
these assumptions true.

For example, in producing the above response about the differences between setf and
setq, the system made the assumption that the user knew what generalized-variables were
and simply used this term in the explanation without describing it further. If the ex-
planation were misunderstood, the system would have planned a response to make this
assumption true by describing generalized variables.

6.3 Current Status

The expert system and explanation facility described in this section are implemented. There
are approximately 50 plan operators, 5 plan selection heuristics, and 5 recovery heuristics.
The system can produce the text plans necessary to participate in the dialogue shown and
several others that are similar. We are currently in the process of interfacing the text
planner to the text generation system.

7 Summary

We have argued that expert systems explanation facilities are inadequate in many ways.
We saw that early approaches to explanation were inadequate in part because much of the
knowledge needed to answer users' questions was not explicitly represented. For example,
early systems did not include justifications of their rules or an explicit representation of

49



thc:: piblem-solving strategies. Thus systems such as MYCIN and the Digitalis Advisor
could explain what they were doing, but not why they were doing it.

NEOMYCIN and XPLAIN demonstrated that providing the missing knowledge in an
explicit way improved the explanations that could be produced. These systems were able
to generate abstract descriptions of their problem-solving strategies and were able to justify
their behavior. However, these efforts also showed that augmenting the knowledge bases of
expert systems is not, in itself, sufficient to overcome the limitations of simple generation
techniques. Explanations produced by these systems were not structured according to rules
of discourse, the systems had only limited capabilities for tailoring explanations to different
users, and follow-up questions could not be handled in a meaningful way.

Thus we saw that increased sophistication in the system's explanation strategies was
needed as well. Simple techniques such as canned text or translating the system's problem-
solving activity simply were not satisfactory. To find more sophisticated approaches, we
turned to some of the recent work in producing responses to users' questions from the natural
language generation literature. These efforts were capable of producing coherent multi-
sentential texts that followed rules of discourse and had the capability to tailor responses
to the user's goals or level of expertise. However, none of them provide what analyses
of naturally occurring text reveal to be an important component of any expert system
explanation facility - the ability to take part in an interactive dialogue with the user.

Current expert systems treat explanation in a one-shot fashion. Given a query, these
systems respond with the only explanation they can produce. This unnatural approach to
explanation depends critically on the quality of the user model and is seriously degraded
if that model is incomplete or incorrect. These systems do not keep a dialogue history,
but even if they did, they do not have alternative strategies for producing rsponses or
heuristics for deciding when different strategies are appropriate. Because they fail to support
dialogue, these systems cannot clarify misunderstood explanations, elaborate on previous
explanations, or respond to follow-up questions in the context of the on-going dialogue.

As an alternative, we developed a reactive model of explanation - one that allows for
feedback from the user about the understandability of the explanations it produces. By
recording the intentional structure of the responses it produces, our system can reason
about its own responses when feedback from the listener indicates that an explanation was
not understood. This allows our system to respond to follow-up questions in context and
react to the user's need for elaboration. We believe that such an approach more closely
matches the behavior observed in naturally occurring dialogues.

We believe that explanation for expert systems offers a challenging arena for researchers
in many disciplines. The needs of explanation push the boundaries of expressive capability
and computational complexity in knowledge representation. Current systems are only able
to answer a fraction of the many types of questions users would like to ask, and empowering
systems with the ability to answers new types of questions will require enhancements to
their knowledge bases. Explanation also provides an interesting domain for work in reac-
tive planning and execution monitoring since ideally a system should be able to produce
explanations incrementally, monitoring the user's feedback and allowing the user to inter-
rupt if he is not following or the system is giving him information he already knows. The
system should be able to dynamically alter its explanations as a result of this feedback. In
addition, explanation provides a rich domain for research in computational linguistics and

50



human-computer interaction. The knowledge bases of expert systems are large and complex
and the same knowledge may be represented at various levels of abstraction or in various
forms. In answering the many types of questions that may be asked about such a knowl-
edge base, an expert system explanation facility must choose what to include from all the
available knowledge, select the appropriate level of detail for a given situation, organize the
knowledge into a coherent form, and phrase the knowledge in a manner that will not over-
or under-inform a particular user. In some domains, explanations may best be presented by
a combination of various media. For example, to explain how a mechanical device works, it
may be best to present a pictorial display of the device along with text that describes how
it works. Integrating text with graphic displays and narrating animations are challenging
open problems. Explanation may also provide a fruitful domain for machine learning since
we would like a system to learn new strategies as a result of its explanation experiences
and feedback from the user. For example, a system could learn which strategies worked
well for users of certain types, which aspects of its domain knowledge are particularly dif-
ficult to understand, or what are the common misunderstandings for certain aspects of its
domain knowledge and how these misunderstandings are typically corrected. We believe
that tackling issues such as these will further improve the explanatory capabilities of expert
systems and will produce results that are of general interest in many other areas of artifical
intelligence as well.
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